版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、龍文教育教育一、在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),若直接證不出來(lái),可連接兩點(diǎn)或延長(zhǎng)某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再運(yùn)用三角形三邊的不等關(guān)系證明,如:例1:已知如圖11:D、E為△ABC內(nèi)兩點(diǎn)求證:AB+AC>BD+DE+CE.證明:(法一)證明:(法一)將DE兩邊延長(zhǎng)分別交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>C
2、E;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:)(法二:)如圖12,延長(zhǎng)BD交AC于F,延長(zhǎng)CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF(三角形兩邊之和大于第三邊)(1)GF+FC>GE+CE(同上)………………………………(2)DG+GE>DE(同上)……………………………………(3)由(1)+(2)+(3
3、)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。二、在利用三角形的外角大于任何和它不相鄰的內(nèi)角時(shí)如直接證不出來(lái)時(shí),可連接兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形的外角的位置上,小角處于這個(gè)三角形的內(nèi)角位置上,再利用外角定理:例如:如圖21:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。分析分析:因?yàn)椤螧DC與∠BAC不在同一個(gè)三角形中,沒(méi)有直接的聯(lián)系,可適當(dāng)
4、添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;證法一證法一:延長(zhǎng)BD交AC于點(diǎn)E,這時(shí)∠BDC是△EDC的外角,∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC證法二:連接AD,并延長(zhǎng)交BC于F∵∠BDF是△ABD的外角∴∠BDF>∠BAD,同理,∠CDF>∠CAD∴∠BDF+∠CDF>∠BAD+∠CAD即:∠BDC>∠BAC。注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三
5、角形的外角位置上,小角放在這個(gè)三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。三、有角平分線時(shí),通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖31:已知AD為△ABC的中線,且∠1=∠2∠3=∠4求證:BE+CF>EF。分析:要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個(gè)三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對(duì)應(yīng)邊相等,把EN,F(xiàn)N,EF移到同一個(gè)
6、三角形中。證明:證明:在DA上截取DN=DB,連接NE,NF,則DN=DC,ABCDENM11?圖ABCDEFG21?圖ABCDEFG12?圖ABCDEFN13?圖12343∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形對(duì)應(yīng)邊相等)∵在△ABE中有:AB+BE>AE(三角形兩邊之和大于第三邊)∴AB+AC>2AD。(常延長(zhǎng)中線加倍,構(gòu)造全等三角形)練習(xí):已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向形外作等
7、腰直角三角形,如圖52,求證EF=2AD。六、截長(zhǎng)補(bǔ)短法作輔助線。例如:已知如圖61:在△ABC中,AB>AC,∠1=∠2,P為AD上任一點(diǎn)。求證:AB-AC>PB-PC。分析:要證:AB-AC>PB-PC,想到利用三角形三邊關(guān)系定理證之,因?yàn)橛C的是線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再連接PN,則PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC
8、>PB-PC。證明:(截長(zhǎng)法)在AB上截取AN=AC連接PN在△APN和△APC中∵??????????)()(21)(公共邊已知輔助線的作法APAPACAN∴△APN≌△APC(SAS)∴PC=PN(全等三角形對(duì)應(yīng)邊相等)∵在△BPN中,有PB-PN<BN(三角形兩邊之差小于第三邊)∴BP-PC<AB-AC證明:(補(bǔ)短法)延長(zhǎng)AC至M,使AM=AB,連接PM,在△ABP和△AMP中∵??????????)()(21)(公共邊已知輔助線
9、的作法APAPAMAB∴△ABP≌△AMP(SAS)∴PB=PM(全等三角形對(duì)應(yīng)邊相等)又∵在△PCM中有:CM>PM-PC(三角形兩邊之差小于第三邊)∴AB-AC>PB-PC。七、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖71:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無(wú)法證全
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 相似三角形輔助線添加
- 全等三角形輔助線經(jīng)典做法習(xí)題
- 全等三角形輔助線經(jīng)典做法習(xí)題
- 添加輔助線構(gòu)造全等三角形
- 相似三角形添加輔助線的方法舉例有答案
- 全等三角形中輔助線的添加
- 全等三角形經(jīng)典題型輔助線
- 全等三角形輔助線方法
- 幾種證明全等三角形添加輔助線的方法
- 三角形作輔助線的方法
- 全等三角形經(jīng)典輔助線做法匯總
- 全等三角形經(jīng)典題型——輔助線問(wèn)題
- 全等三角形作輔助線經(jīng)典例題
- 全等三角形中的常用輔助線(經(jīng)典)
- 全等三角形中的常用輔助線(經(jīng)典)
- 全等三角形輔助線歸類
- 相似三角形常用輔助線
- 三角形常見(jiàn)輔助線作法
- 常見(jiàn)三角形輔助線口訣
- 三角形輔助線的作法總結(jié)
評(píng)論
0/150
提交評(píng)論