基于定性相空間的應(yīng)急資源需求預測方法研究.pdf_第1頁
已閱讀1頁,還剩57頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、中國科學技術(shù)大學碩士學位論文基于定性相空間的應(yīng)急資源需求預測方法研究姓名:操張進申請學位級別:碩士專業(yè):管理科學與工程指導教師:@2011-05-20Abstract III ABSTRACT Emergency logistics management, which has aroused growing concerns, has become a research hotspot in recent years due to it

2、s great significance for improving the emergency management capability of Government. After the unexpected events happened, emergency logistics distribution system not only needs to transport emergency resource, but also

3、 should timely supply appropriate goods to affected areas in right way. Because of hardness of timely acquiring disaster information and the imbalance between supply and demand, if decision-makers can initiatively integr

4、ate disaster information and predict the demand of emergency resource after the occurrence of large-scale disaster, it will contribute to allocate emergency resources effectively and efficiently and avoid the imbalance o

5、f supply-demand. In this paper, considering the characteristics of emergency demand time series, we proposed a simulation theory based algorithm which combines qualitative and quantitative models to forecast the demand a

6、fter unexpected events. This study selected the daily trading data from an agricultural products market after the 2008 snowstorm in Anhui province as the time series which will be studied in this paper. Firstly, this art

7、icle proved that the aforementioned time series is chaotic and applied the phase space based maximum Lyapunov exponent model to this time series to obtain preliminary forecast results. Then, we adjusted the results by us

8、ing qualitative knowledge. In addition, this paper applied fuzzy equivalent matrix based clustering analysis and TOPSIS to identify the damage level of each affected area, then we know the urgency of each disaster node a

9、nd this is necessary knowledge for emergency resource distribution. Finally, we concluded that the proposed prediction method in this paper performs better than ARIMA model and merely quantitative methods, and the propos

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論