版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、初中數(shù)學(xué)添加輔助線的方法匯總初中數(shù)學(xué)添加輔助線的方法匯總作輔助線的基本方法作輔助線的基本方法一:中點(diǎn)、中位線,延長(zhǎng)線,平行線。一:中點(diǎn)、中位線,延長(zhǎng)線,平行線。如遇條件中有中點(diǎn),中線、中位線等,那么過(guò)中點(diǎn),延長(zhǎng)中線或中位線作輔助線,使延長(zhǎng)的某一段等于中線或中位線;另一種輔助線是過(guò)中點(diǎn)作已知邊或線段的平行線,以達(dá)到應(yīng)用某個(gè)定理或造成全等的目的。二:垂線、分角線,翻轉(zhuǎn)全等連。二:垂線、分角線,翻轉(zhuǎn)全等連。如遇條件中,有垂線或角的平分線,可以
2、把圖形按軸對(duì)稱(chēng)的方法,并借助其他條件,而旋轉(zhuǎn)180度,得到全等形,,這時(shí)輔助線的做法就會(huì)應(yīng)運(yùn)而生。其對(duì)稱(chēng)軸往往是垂線或角的平分線。三:邊邊若相等,旋轉(zhuǎn)做實(shí)驗(yàn)。三:邊邊若相等,旋轉(zhuǎn)做實(shí)驗(yàn)。如遇條件中有多邊形的兩邊相等或兩角相等,有時(shí)邊角互相配合,然后把圖形旋轉(zhuǎn)一定的角度,就可以得到全等形,這時(shí)輔助線的做法仍會(huì)應(yīng)運(yùn)而生。其對(duì)稱(chēng)中心,因題而異,有時(shí)沒(méi)有中心。故可分“有心”和“無(wú)心”旋轉(zhuǎn)兩種。四:造角、平、相似,和、差、積、商見(jiàn)。造角、平、相似
3、,和、差、積、商見(jiàn)。如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關(guān)。在制造兩個(gè)三角形相似時(shí),一般地,有兩種方法:第一,造一個(gè)輔助角等于已知角;第二,是把三角形中的某一線段進(jìn)行平移。故作歌訣:“造角、平、相似,和差積商見(jiàn)?!蓖辛忻锥ɡ砗兔啡~勞定理的證明輔助線分別是造角和平移的代表)五:兩圓若相交,連心公共弦。五:兩圓若相交,連心公共弦。如果條件中出現(xiàn)兩圓相交,那么輔助線往往是連心線或公共弦。六:兩圓相切、
4、離,連心,公切線。六:兩圓相切、離,連心,公切線。如條件中出現(xiàn)兩圓相切(外切,內(nèi)切),或相離(內(nèi)含、外離),那么,輔助線往往是連心線或內(nèi)外公切線。七:切線連直徑,直角與半圓。七:切線連直徑,直角與半圓。如果條件中出現(xiàn)圓的切線,那么輔助線是過(guò)切點(diǎn)的直徑或半徑使出現(xiàn)直角;相反,條件中是圓的直徑,半徑,那么輔助線是過(guò)直徑(或半徑)端點(diǎn)的切線。即切線與直徑互為輔助線。如果條件中有直角三角形,那么作輔助線往往是斜邊為直徑作輔助圓,或半圓;相反,條
5、件中有半圓,那么在直徑上找圓周角——直角為輔助線。即直角與半圓互為輔助線。八:弧、弦、弦心距;平行、等距、弦。八:弧、弦、弦心距;平行、等距、弦。如遇弧,則弧上的弦是輔助線;如遇弦,則弦心距為輔助線。如遇平行線,則平行線間的距離相等,距離為輔助線;反之,亦成立。如遇平行弦,則平行線間的距離相等,所夾的弦亦相等,距離和所夾的弦都可視為輔助線,反之,亦成立。有時(shí),圓周角,弦切角,圓心角,圓內(nèi)角和圓外角也存在因果關(guān)系互相聯(lián)想作輔助線。九:面積
6、找底高,多邊變?nèi)叀>牛好娣e找底高,多邊變?nèi)叀H缬銮竺娣e,(在條件和結(jié)論中出現(xiàn)線段的平方、乘積,仍可視為求面積),往往作底或高為輔助線,而兩三角形的等底或等高是思考的關(guān)鍵。如遇多邊形,想法割補(bǔ)成三角形;反之,亦成立。另外,我國(guó)明清數(shù)學(xué)家用面積證明勾股定理,其輔助線的做法,即“割補(bǔ)”有二百多種,大多數(shù)為“面積找底高,多邊變?nèi)叀?。方法方?:含有平分線的題目,常以角平分線為對(duì)稱(chēng)軸,利用角平分線的性質(zhì)和題中的條件,構(gòu)造出全等三角形,從而利
7、用全等三角形的知識(shí)解決問(wèn)題。方法方法3:結(jié)論是兩線段相等的題目常畫(huà)輔助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一些定理。方法方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類(lèi)題目,常采用截長(zhǎng)法或補(bǔ)短法,所謂截長(zhǎng)法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一部分等于第二條線段。2.平行四邊形中常用輔助線的添法平行四邊形中常用輔助線的添法平行四邊形(包括矩形、正方形、菱形)的兩組對(duì)邊、對(duì)角和對(duì)角線都具有某些相同性質(zhì),
8、所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全等、相似,把平行四邊形問(wèn)題轉(zhuǎn)化成常見(jiàn)的三角形、正方形等問(wèn)題處理,其常用方法有下列幾種,舉例簡(jiǎn)解如下:(1)連對(duì)角線或平移對(duì)角線:)連對(duì)角線或平移對(duì)角線:(2)過(guò)頂點(diǎn)作對(duì)邊的垂線構(gòu)造直角三角形)過(guò)頂點(diǎn)作對(duì)邊的垂線構(gòu)造直角三角形(3)連接對(duì)角線交點(diǎn)與一邊中點(diǎn),或過(guò)對(duì)角線交點(diǎn)作一邊的平行線,構(gòu)造線段平行或中位)連接對(duì)角線交點(diǎn)與一邊中點(diǎn),或過(guò)對(duì)角線交點(diǎn)作一邊的平行線,
9、構(gòu)造線段平行或中位線(4)連接頂點(diǎn)與對(duì)邊上一點(diǎn)的線段或延長(zhǎng)這條線段,構(gòu)造三角形相似或等積三角形。)連接頂點(diǎn)與對(duì)邊上一點(diǎn)的線段或延長(zhǎng)這條線段,構(gòu)造三角形相似或等積三角形。(5)過(guò)頂點(diǎn)作對(duì)角線的垂線,構(gòu)成線段平行或三角形全等)過(guò)頂點(diǎn)作對(duì)角線的垂線,構(gòu)成線段平行或三角形全等.3.梯形中常用輔助線的添法梯形中常用輔助線的添法梯形是一種特殊的四邊形。它是平行四邊形、三角形知識(shí)的綜合,通過(guò)添加適當(dāng)?shù)妮o助線將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)
10、解決。輔助線的添加成為問(wèn)題解決的橋梁,梯形中常用到的輔助線有:(1)在梯形內(nèi)部平移一腰。)在梯形內(nèi)部平移一腰。(2)梯形外平移一腰)梯形外平移一腰(3)梯形內(nèi)平移兩腰)梯形內(nèi)平移兩腰(4)延長(zhǎng)兩腰)延長(zhǎng)兩腰(5)過(guò)梯形上底的兩端點(diǎn)向下底作高)過(guò)梯形上底的兩端點(diǎn)向下底作高(6)平移對(duì)角線)平移對(duì)角線(7)連接梯形一頂點(diǎn)及一腰的中點(diǎn)。)連接梯形一頂點(diǎn)及一腰的中點(diǎn)。(8)過(guò)一腰的中點(diǎn)作另一腰的平行線。)過(guò)一腰的中點(diǎn)作另一腰的平行線。(9)作中
11、位)作中位線當(dāng)然在梯形的有關(guān)證明和計(jì)算中,添加的輔助線并不一定是固定不變的、單一的。通過(guò)輔助線這座橋梁,將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決,這是解決問(wèn)題的關(guān)鍵。4.圓中常用輔助線的添法圓中常用輔助線的添法在平面幾何中,解決與圓有關(guān)的問(wèn)題時(shí),常常需要添加適當(dāng)?shù)妮o助線,架起題設(shè)和結(jié)論間的橋梁,從而使問(wèn)題化難為易,順其自然地得到解決,因此,靈活掌握作輔助線的一般規(guī)律和常見(jiàn)方法,對(duì)提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力是大有幫助的。(1
12、)見(jiàn)弦作弦心距)見(jiàn)弦作弦心距有關(guān)弦的問(wèn)題,常作其弦心距(有時(shí)還須作出相應(yīng)的半徑),通過(guò)垂徑平分定理,來(lái)溝通題設(shè)與結(jié)論間的聯(lián)系。(2)見(jiàn)直徑作圓周角)見(jiàn)直徑作圓周角在題目中若已知圓的直徑,一般是作直徑所對(duì)的圓周角,利用“直徑所對(duì)的圓周角是直角“這一特征來(lái)證明問(wèn)題。(3)見(jiàn)切線作半徑)見(jiàn)切線作半徑命題的條件中含有圓的切線,往往是連結(jié)過(guò)切點(diǎn)的半徑,利用“切線與半徑垂直“這一性質(zhì)來(lái)證明問(wèn)題。(4)兩圓相切作公切線)兩圓相切作公切線對(duì)兩圓相切的問(wèn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中數(shù)學(xué)輔助線的添加方法匯總
- 初中數(shù)學(xué)常見(jiàn)【輔助線】添加方法歸納
- 初中數(shù)學(xué)輔助線的添加淺談
- 添加輔助線的方法
- 幾何輔助線的添加方法
- 數(shù)學(xué) 幾何論證題中輔助線的添加方法
- 初中平面幾何常見(jiàn)添加輔助線的方法
- 初二幾何輔助線添加方法
- 圓中常用輔助線的添加方法
- 典型的平行線添加輔助線的方法
- 初中數(shù)學(xué)幾何輔助線作法小結(jié)
- 數(shù)學(xué)輔助線
- 數(shù)學(xué)輔助線
- 江蘇初中數(shù)學(xué)幾何題目輔助線
- 初中幾何輔助線
- 初中數(shù)學(xué) 中考幾何常見(jiàn)輔助線介紹
- 添加輔助線構(gòu)造旋轉(zhuǎn)變換
- 初中幾何輔助線大全
- 初中幾何輔助線的規(guī)律
- 初中幾何輔助線的規(guī)律
評(píng)論
0/150
提交評(píng)論