版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、傳統(tǒng)的因析試驗(yàn)主要被用來(lái)分析位置效應(yīng),分析時(shí)一般采用常方差的假定條件.自上世紀(jì)80年代以來(lái),產(chǎn)品質(zhì)量改進(jìn)過(guò)程中對(duì)響應(yīng)變量的方差建模有了更多的研究.特別是自1986年Tagnchi提出的穩(wěn)健參數(shù)設(shè)計(jì)以來(lái),因析試驗(yàn)中散度效應(yīng)的分析受到了更為廣泛的關(guān)注.在試驗(yàn)設(shè)計(jì)中,同時(shí)識(shí)別位置效應(yīng)和散度效應(yīng)傳統(tǒng)上是在有重復(fù)試驗(yàn)中進(jìn)行,而有重復(fù)試驗(yàn)需要更多的時(shí)間和費(fèi)用.因此,在無(wú)重復(fù)條件下識(shí)別位置效應(yīng)和散度效應(yīng)變得更為重要.
無(wú)重復(fù)因析試驗(yàn)中位置效
2、應(yīng)的分析已經(jīng)被深入地研究,可以參見(jiàn)Hamada和Bal-akishnan等對(duì)各種方法的評(píng)述,在無(wú)重復(fù)試驗(yàn)中,由于無(wú)法直接得到試驗(yàn)點(diǎn)的方差估計(jì),因此使散度效應(yīng)的研究變得更為困難.Box和Meyer在這方面做了開(kāi)創(chuàng)性的工作,此后,研究者們提出了許多從無(wú)重復(fù)因析試驗(yàn)中鑒別散度效應(yīng)的方法.如:Wang(1989), Montgomery(1990), Bergman和Hynen(1997), Harvey(1976), Davidian和Car
3、roll(1987),McGrath和Lin(2001),Brenneman和Nair(2001)等.
Brenneman和Nair(2001)對(duì)無(wú)重復(fù)因析試驗(yàn)中散度效應(yīng)的各種鑒別方法做了系統(tǒng)的研究.并指出幾個(gè)常用方法在一定程度上都有基本偏差存在,即使在位置效應(yīng)都被正確識(shí)別的前提下,多個(gè)散度效應(yīng)的出現(xiàn)對(duì)散度效應(yīng)的推斷有較大影響,容易造成錯(cuò)誤的識(shí)別.McGrath和Lin也指出了同樣的問(wèn)題.因此Brennlman和Nair(20
4、01)(MH方法),McGrath和Lin(ML方法)分別提出了各自的散度效應(yīng)的鑒別方法,并且通過(guò)模擬比較證明了他們提出的方法在一定程度上優(yōu)于其他方法.
本文對(duì)幾種無(wú)重復(fù)因析試驗(yàn)中散度效應(yīng)的估計(jì)方法(BH方法,MH方法,AMH方法,AML方法)做了進(jìn)一步的比較分析,BH方法(Bergman和Hynen(1997))是基于待估因子對(duì)應(yīng)正負(fù)水平殘差平方的算術(shù)平均的比來(lái)構(gòu)造散度效應(yīng)的估計(jì).ML方法(McGrath和Lin(2001)
5、)是基于殘差的樣本方差的幾何平均數(shù)來(lái)構(gòu)造散度效應(yīng)的檢驗(yàn)統(tǒng)計(jì)量.將ML方法中的殘差用擬合擴(kuò)展位置效應(yīng)模型得到的殘差來(lái)代替,得到的方法稱(chēng)為AML方法.MH方法(Brenneman和Nair(2001))是基于待估因子對(duì)應(yīng)正負(fù)水平殘差平方的對(duì)數(shù)的算術(shù)平均(相當(dāng)于殘差平方的幾何平均的對(duì)數(shù))的比來(lái)構(gòu)造散度效應(yīng)的估計(jì),并且Brenneman和Nair(2001)證明了MH方法的無(wú)偏性,但是當(dāng)位置效應(yīng)模型擬合后得到的殘差絕對(duì)值很小時(shí),對(duì)殘差的平方取對(duì)
6、數(shù)會(huì)變得很大,得到的估計(jì)會(huì)不可靠,特別是殘差為0時(shí),無(wú)法直接對(duì)殘差平方取對(duì)數(shù),MH方法不再適用.AMH方法是對(duì)MH方法的一個(gè)修正,方法是先對(duì)殘差平方加上一個(gè)大于0的修正項(xiàng),然后再取對(duì)數(shù)去估計(jì)散度效應(yīng).在方差對(duì)數(shù)線性模型下,基于以上方法本文提出一個(gè)更廣義的散度效應(yīng)的估計(jì),稱(chēng)為G估計(jì),證明了BH,MH,AMH,AML估計(jì)均為G估計(jì)的特例,并且討論了G估計(jì)的無(wú)偏性和方差下界,通過(guò)模擬實(shí)驗(yàn)比較了這些估計(jì)的均值,方差和均方誤差(MSE).提出了鑒
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無(wú)重復(fù)因析試驗(yàn)中散度效應(yīng)的ML估計(jì).pdf
- 無(wú)重復(fù)因析試驗(yàn)設(shè)計(jì)散度效應(yīng)的截?cái)喙烙?jì).pdf
- 兩水平無(wú)重復(fù)因析試驗(yàn)中AMH估計(jì)的性質(zhì).pdf
- 幾種無(wú)重復(fù)試驗(yàn)的飽和析因設(shè)計(jì)分析方法的穩(wěn)健性.pdf
- 包含純凈效應(yīng)的混水平部分因析裂區(qū)設(shè)計(jì).pdf
- 兩水平部分因析設(shè)計(jì)純凈準(zhǔn)則的理論和最優(yōu)設(shè)計(jì)的構(gòu)造.pdf
- 包含純凈效應(yīng)的分區(qū)組部分因析設(shè)計(jì).pdf
- 二水平因析設(shè)計(jì)若干問(wèn)題的研究.pdf
- GMC二水平部分因析設(shè)計(jì)的最優(yōu)分區(qū)組.pdf
- 無(wú)參考圖像模糊度估計(jì).pdf
- 非散度型線性橢圓方程強(qiáng)解的Hessian估計(jì).pdf
- 15690.具有切向邊界的無(wú)散度和無(wú)旋度小波
- 無(wú)重復(fù)字庫(kù)
- 雙因素?zé)o重復(fù)試驗(yàn)設(shè)計(jì)方差分析 (1)
- 圖的無(wú)重復(fù)染色.pdf
- 重復(fù)考試效應(yīng)研究.pdf
- 任意水平部分因析設(shè)計(jì)在一般最小低階混雜準(zhǔn)則下的性質(zhì).pdf
- 論有因行為與無(wú)因行為的區(qū)分.pdf
- 時(shí)序知覺(jué)的重復(fù)啟動(dòng)效應(yīng).pdf
- 包含純凈效應(yīng)的2(n1+n2)_(k1+k2)41ω41s混水平部分因析裂區(qū)設(shè)計(jì).pdf
評(píng)論
0/150
提交評(píng)論