《正弦定理》教案_第1頁
已閱讀1頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、《正弦定理正弦定理》教學設計教學設計一、教學目標分析一、教學目標分析1、知識與技能:通過對銳角三角形中邊與角的關系的探索,發(fā)現(xiàn)正弦定理;掌握正弦定理的內(nèi)容及其證明方法;能利用正弦定理解三角形以及利用正弦定理解決簡單的實際問題。2、過程與方法:讓學生從實際問題出發(fā),結合以前學習過的直角三角形中的邊角關系,引導學生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理,使學生體會完全歸納法在定理證明中的應用;讓學生在應

2、用定理解決問題的過程中更深入的理解定理及其作用。3、情感態(tài)度與價值觀:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,發(fā)現(xiàn)并證明正弦定理。從發(fā)現(xiàn)與證明的過程中體驗數(shù)學的探索性與創(chuàng)造性,讓學生體驗成功的喜悅,激發(fā)學生的好奇心與求知欲。培養(yǎng)學生處理解三角形問題的運算能力和探索數(shù)學規(guī)律的推理能力,并培養(yǎng)學生堅忍不拔的意志、實事求是的科學態(tài)度和樂于探索、勇于創(chuàng)新的精神。二、教學重點、難點分析二、教學重點、難點分析重點

3、:通過對銳角三角形邊與角關系的探索,發(fā)現(xiàn)、證明正弦定理并運用正弦定理解決一些簡單的三角形度量問題。難點:①正弦定理的發(fā)現(xiàn)與證明過程;②已知兩邊以及其中一邊的對角解三角形時解的個數(shù)的判斷。三、教法與學法分析三、教法與學法分析本節(jié)課是教材第一章《解三角形》的第一節(jié),所需主要基礎知識有直角三角形的邊角關系,三角函數(shù)相關知識。在教法上,根據(jù)教材的內(nèi)容和編排的特點,為更有效的突出重點,突破難點,教學中采用探究式課堂教學模式,首先從學生熟悉的銳角三

4、角形情形入手,設計恰當?shù)膯栴}情境,將新知識與學生已有的知識建立起密切的聯(lián)系,通過學生自己的親身體驗,使學生經(jīng)歷正弦定理的發(fā)現(xiàn)過程,激發(fā)學生的求知欲,調動學生主動參與的積極性,引導學生嘗試運用新知識解決新問題,即在教學過程中,讓學生的思維由問題開始,通過猜想的得出、猜想的探究、定理的推導等環(huán)節(jié)逐步得到深化。教學過程中鼓勵學生合作交流、動手實踐,通過對定理的推導、解讀、應用,引導學生主動思考、總結、歸納解答過程中的內(nèi)在規(guī)律,形成一般結論。在

5、學法上,采用個人探究、教師講解,學生討論相結合的方法,讓學生在問題情境中學習,自覺運用觀察、類比、歸納等思想方法,體驗數(shù)學知識的內(nèi)在聯(lián)系,重視學生自主探究,增強學生由特殊到一般的數(shù)學思維能力,形成實事求是的科學態(tài)度和嚴謹求真的學習習慣。四、學情分析四、學情分析對于高一的學生來說,已學的平面幾何,解直角三角形,三角函數(shù)等知識,有一定觀察分析、解決問題的能力,但對前后知識間的聯(lián)系、理解、應用有一定難度,因此思維靈活性受到制約。同時,由于學生

6、目前還沒有學習平面向量,因此,對于正弦定理的證明方法——向量法,本節(jié)課沒有涉及到。根據(jù)以上特點,教師恰當引導,提高學生學習主動性,多加以前后知識間的聯(lián)系,帶領學生直接參與分析問題、解決問題并品嘗勞動成果的喜悅。五、教學工具五、教學工具多媒體課件六、教學過程六、教學過程創(chuàng)設情境,導入新課創(chuàng)設情境,導入新課教師:能否像求AC的方法一樣對BC進行求解呢?學生:可以教師:那么具體應該怎么做呢?學生:過點B向AC作高,垂直記作E,如圖:接下來,只

7、需要將相關的數(shù)據(jù)代入即可求出BC的長度教師:總結學生的做法通過作兩條高線后,即可把AC、BC的長度用已知的邊和角表示出來接下來,只需要將題目中的相關數(shù)據(jù)代入,本題便迎刃而解。定理的發(fā)現(xiàn):定理的發(fā)現(xiàn):教師:如果把本題目中的有關數(shù)據(jù)變一下,其中A=50o,B=80o大家又該怎么做呢?學生1:同樣的做法(仍得作高)學生2:只需將已知數(shù)據(jù)代入上述等式即可求出兩邊的長度教師:還需要再次作高嗎?學生:不用教師:對于任意的銳角三角形中的“已知兩角及其

8、夾邊,求其他兩邊的長”的問題是否都可以用上述兩個等式進行解決呢?學生:可以教師:既然這兩個等式適合于任意的銳角三角形,那么我們只需要記住這兩個等式,以后若是再遇見銳角三角形中的這種問題,直接應用這兩個等式并進行代入求值即可。教師:大家看看,這兩個等式的形式是否容易記憶呢?學生:不容易教師:能否美化這個形式呢?學生:美化之后可以得到:(定理)教師:銳角三角形中的這個結論,到底表達的是什么意思呢?學生:在銳角三角形中,各邊與它所對角的正弦的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論