反應(yīng)擴散方程的漸近周期解及行波解.pdf_第1頁
已閱讀1頁,還剩123頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、華中科技大學(xué)博士學(xué)位論文反應(yīng)擴散方程的漸近周期解及行波解姓名:王金良申請學(xué)位級別:博士專業(yè):系統(tǒng)分析與集成指導(dǎo)教師:周笠20060405AbstractIn the study of the applied mathematics, it is very important to reveal the as-ymptotic behavior of the solutions for the differential equations

2、 and many researchershave been attracted to do so. For example, it is essential to know the evolution ofa population model as time goes on, since it is related to the serious problem of thespecies — to survive or to exti

3、nct. Usually, in order to reveal the asymptotic behaviorof the solution for a reaction-diffusion equation, it needs to prove the existence of thesteady-state solution or the periodic solution for the boundary value probl

4、em, yet it isimpossible for a nonperiodic time-varying system. Enlightened by the “weighted peri-odic”phenomenon, we consider these problems by another approach, that is, to studya particular asymptotic behavior—“asympto

5、tic weighted periodicity”. In addition, wehave also considered the existence of the wavefront solution (usually called travellingwave solution) which has special asymptotic behavior for the reaction-diffusion equa-tion i

6、n a multidimensional cylinder.For a population of a species, its density is affected not only by the environmentbut also by the time delays. In fact, there are so many factors may bring on time delaysto the evolution of

7、a population, such as the hatch period of the Aves, the gestationperiod of the mammals and the retarded supply of the food. What’s the asymptoticbehavior of a system with time delays? What about the effects of the time d

8、elays ona certain ecosystem? To answer these questions, we give a detailed discussion respectto the food-limited model and the competition model.It is known that a function f(t) is periodic if it satisfies f(t + T) = f(t

9、) for somepositive constant T. This kind of functions accords with the ideal movements of thesubstance in nature. Yet it is not always the case, such as the familiar damp vibrations.We take the swing of a single pendulum

10、 as an example. Let f(t) be the function ofthe swing angle. It should satisfies w(t) = f(t + T)/f(t) ?≡ 1 due to the resistanceof the air. In fact, w(t) satisfies 0 < w(t) < 1 in this case. We are enlightened bythi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論