版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 外文資料原文</b></p><p><b> DS1820</b></p><p><b> FEATURES</b></p><p> ? Unique 1–WireTM interface requires only one port pin for comm
2、unication</p><p> ? Multidrop capability simplifies distributed temperature sensing applications</p><p> ? Requires no external components</p><p> ? Can be powered from data line
3、</p><p> ? Zero standby power required</p><p> ? Measures temperatures from –55°C to +125°C in 0.5°C increments. Fahrenheit equivalent is –67°F to +257°F in 0.9°F
4、 increments</p><p> ? Temperature is read as a 9–bit digital value.</p><p> ? Converts temperature to digital word in 200 ms (typ.)</p><p> ? User–definable, nonvolatile temperat
5、ure alarm settings</p><p> ? Alarm search command identifies and addresses devices whose temperature is outside of programmed limits (temperature alarm condition)</p><p> ? Applications includ
6、e thermostatic controls, industrial systems, consumer products, thermometers, or any thermally sensitive system</p><p> DESCRIPTION</p><p> The DS1820 Digital Thermometer provides 9–bit temper
7、ature readings which indicate the temperature of the device. Information is sent to/from the DS1820 over a 1–Wire interface, so that only one wire (and ground) needs to be connected from a central microprocessor to a DS1
8、820. Power for reading, writing, and performing temperature conversions can be derived from the data line itself with no need for an external power source. Because each DS1820 contains a unique silicon serial number, mu
9、ltiple D</p><p> DETAILED PIN DESCRIPTION</p><p><b> OVERVIEW</b></p><p> The block diagram of Figure 1 shows the major components of the DS1820. The DS1820 has three
10、 main data components:</p><p> 1) 64–bit lasered ROM,</p><p> 2) temperature and sensor, </p><p> 3) nonvolatile temperature alarm triggers TH and TL. </p><p> The
11、device derives its power from the 1–Wire communication line by storing energy on an internal capacitor during periods of time when the signal line is high and continues to operate off this power source during the low tim
12、es of the 1–Wire line until it returns high to replenish the parasite (capacitor) supply. As an alternative, the DS1820 may also be powered from an external 5 volts supply.</p><p> Communication to the DS18
13、20 is via a 1–Wire port. With the 1–Wire port, the memory and control functions will not be available before the ROM function protocol has been established. The master must first provide one of five ROM function commands
14、: 1) Read ROM, 2) Match ROM, 3) Search ROM, 4) Skip ROM, or 5) Alarm Search. These commands operate on the 64–bit lasered ROM portion of each device and can single out a specific device if many are present on the 1–Wire
15、line as well as indicate to the Bus</p><p> After a ROM function sequence has been successfully executed, the memory and control functions are accessible and the master may then provide any one of the six m
16、emory and control function commands. One control function command instructs the DS1820 to perform a temperature measurement. The result of this measurement will be placed in the DS1820’s scratchpad memory, and may be rea
17、d by issuing a memory function command which reads the contents of the scratchpad memory. The temperature alarm trigge</p><p> The advantages of parasite power are two–fold:</p><p> 1) by para
18、siting off this pin, no local power source is needed for remote sensing of temperature, </p><p> 2) the ROM may be read in absence of normal power. In order for the DS1820 to be able to perform accurate tem
19、perature conversions, sufficient power must be provided over the I/O line when a temperature conversion is taking place. Since the operating current of the DS1820 is up to 1 mA, the I/O line will not have sufficient driv
20、e due to the 5K pull–up resistor. This problem is particularly acute if several DS1820’s are on the same I/O and attempting to convert simultaneously.</p><p> There are two ways to assure that the DS1820 ha
21、s sufficient supply current during its active conversion cycle. The first is to provide a strong pull–up on the I/O line whenever temperature conversions or copies to the E2 memory are taking place. This may be accomplis
22、hed by using a MOSFET to pull the I/O line directly to the power supply as shown in Figure 2. The I/O line must be switched over to the strong pull–up within 10 ms maximum after issuing any protocol that involves copying
23、 to the E2 me</p><p> ROM protocol, then issuing the read power supply command. After this command is issued, the master then issues read time slots.</p><p> The DS1820 will send back “0” on t
24、he 1–Wire bus if it is parasite powered; it will send back a “1” if it is powered from the VDD pin. If the master receives a “0”, it knows that it must supply the strong pull–up on the I/O line during temperature convers
25、ions. See “Memory Command Functions” section for more detail on this command protocol.</p><p> OPERATION – MEASURING TEMPERATURE</p><p> The DS1820 measures temperature through the use of an o
26、n–board proprietary temperature measurement technique. A block diagram of the temperature measurement circuitry is shown in Figure 4. The DS1820 measures temperature by counting the number of clock cycles that an oscilla
27、tor with a low temperature coefficient goes through during a gate period determined by a high temperature coefficient oscillator. The counter is preset with a base count that corresponds to –55°C. If the counter rea
28、ches zero </p><p> If the gate period is still not finished, then this process repeats. The slope accumulator is used to compensate for the non–linear behavior of the oscillators over temperature, yielding
29、a high resolution temperature measurement. This is done by changing the number of counts necessary for the counter to go through for each incremental degree in temperature. To obtain the desired resolution, therefore, bo
30、th the value of the counter and the number of counts per degree C (the value of the slope acc</p><p> Internally, this calculation is done inside the DS1820 to provide 0.5°C resolution. The temperature
31、 reading is provided in a 16–bit, sign–extended two’s complement reading. Table 1 describes the exact relationship of output data to measured temperature. The data is transmitted serially over the 1–Wire interface. The D
32、S1820 can measure temperature over the range of –55°C to +125°C in 0.5°C increments. For Fahrenheit usage, a lookup table or conversion factor must be used.</p><p> Note that temperature is r
33、epresented in the DS1820 in terms of a 1/2°C LSB, yielding the following 9–bit format:</p><p> The most significant (sign) bit is duplicated into all of the bits in the upper MSB of the two–byte temper
34、ature register in memory. This “sign–extension” yields the 16–bit temperature readings as shown in Table 1. Higher resolutions may be obtained by the following procedure. First, read the temperature, and truncate the 0.5
35、°C bit (the LSB) from the read value. This value is TEMP_READ. The value left in the counter may then be read. This value is the count remaining (COUNT_REMAIN) after the gate</p><p> 1–WIRE BUS SYSTEM&
36、lt;/p><p> The 1–Wire bus is a system which has a single bus master and one or more slaves. The DS1820 behaves as a slave. The discussion of this bus system is broken down into three topics: hardware configura
37、tion, transaction sequence, and 1–Wire signaling (signal types and timing).</p><p> HARDWARE CONFIGURATION The 1–Wire bus has only a single line by definition; it is important that each device on the bus be
38、 able to drive it at the appropriate time. To facilitate this, each device attached to the 1–Wire bus must have open drain or 3–state outputs.</p><p> The 1–Wire port of the DS1820 (I/Opin) is open drain wi
39、th an internal circuit equivalent to that shown in Figure 9. A multidrop bus consists of a 1–Wire bus with multiple slaves attached. The 1–Wire bus requires a pullup resistor of approximately 5KW.</p><p> T
40、he idle state for the 1–Wire bus is high. If for any reason a transaction needs to be suspended, the bus MUST be left in the idle state if the transaction is to resume. Infinite recovery time can occur between bits so lo
41、ng as the 1–Wire bus is in the inactive (high) state during the recovery period. If this does not occur and the bus is left low for more than 480 ms, all components on the bus will be reset. TRANSACTION SEQUENCE</p>
42、;<p> The protocol for accessing the DS1820 via the 1–Wire port is as follows:</p><p> ? Initialization</p><p> ? ROM Function Command</p><p> ? Memory Function Command&l
43、t;/p><p> ? Transaction/Data</p><p> INITIALIZATION</p><p> All transactions on the 1–Wire bus begin with an initialization sequence. The initialization sequence consists of a reset
44、 pulse transmitted by the bus master followed by presence pulse(s) transmitted by the slave(s).</p><p> The presence pulse lets the bus master know that the DS1820 is on the bus and is ready to operate. For
45、 more details, see the “1–Wire Signaling” section.</p><p> ROM FUNCTION COMMANDS</p><p> Once the bus master has detected a presence, it can issue one of the five ROM function commands. All RO
46、M function commands are 8–bits long. A list of these commands follows (refer to flowchart in Figure 6):</p><p> Read ROM [33h]</p><p> This command allows the bus master to read the DS1820’s 8
47、–bit family code, unique 48–bit serial number,and 8–bit CRC. This command can only be used if there is a single DS1820 on the bus. If more than one slave is present on the bus, a data collision will occur when all slaves
48、 try to transmit at the same time (open drain will produce a wired AND result).</p><p> Match ROM [55h]</p><p> The match ROM command, followed by a 64–bit ROM sequence, allows the bus master
49、to address a specific DS1820 on a multidrop bus. Only the DS1820 that exactly matches the 64–bit ROM sequence will respond to the following memory function command. All slaves</p><p> that do not match the
50、64–bit ROM sequence will wait for a reset pulse. This command can be used with a single or multiple devices on the bus.</p><p> Skip ROM [CCh]</p><p> This command can save time in a single dr
51、op bus system by allowing the bus master to access the memory functions without providing the 64–bit ROM code. If more than one slave is present on the bus and a read command is issued following the Skip ROM command, dat
52、a collision will occur on the bus as multiple slaves transmit simultaneously (open drain pulldowns will produce a wired AND result).</p><p> Search ROM [F0h]</p><p> When a system is initially
53、 brought up, the bus master might not know the number of devices on the 1–Wire bus or their 64–bit ROM codes. The search ROM command allows the bus master to use a process of elimination to identify the 64–bit ROM codes
54、of all slave devices</p><p> on the bus.</p><p><b> 英文資料譯文</b></p><p><b> DS1820</b></p><p><b> 特性:</b></p><p>
55、183;獨特的單線接口,只需1 個接口引腳即可通信;</p><p> ·多點(multidrop)能力使分布式溫度檢測應用得以簡化;</p><p><b> ·不需要外部元件;</b></p><p><b> ·可用數據線供電;</b></p><p>&l
56、t;b> ·不需備份電源;</b></p><p> ·測量范圍從-55至+125℃,增量值為0.5℃。等效的華氏溫度范圍是-67 F 至257 F,增量值為0.9 F;</p><p> ·以9位數字值方式讀出溫度;</p><p> ·在1秒(典型值)內把溫度變換為數字;</p>&
57、lt;p> ·用戶可定義的,非易失性的溫度告警設置;</p><p> ·告警搜索命令識別和尋址溫度在編定的極限之外的器件(溫度告警情況);</p><p> ·應用范圍包括恒溫控制,工業(yè)系統,消費類產品,溫度計或任何熱敏系統。</p><p><b> 詳細說明</b></p><
58、;p> DS1820有三個主要的數據部件:1)64位激光lasered ROM;2)溫度靈敏元件,和3)非易失性溫度告警觸發(fā)器TH和TL。器件從單線的通信線取得其電源,在信號線為高電平的時間周期內,把能量貯存在內部的電容器中,在單信號線為低電平的時間期內斷開此電源,直到信號線變?yōu)楦唠娖街匦陆由霞纳娙荩╇娫礊橹?。作為另一種可供選擇的方法,DS1820也可以用外部5V電源供電。與DS1820 的通信經過一個單線接口。在單線接口情
59、況下,在ROM 操作未定建立之前不能使用存貯器和控制操作。主機必須首先提供五種ROM操作命令之一;</p><p> 1)Read ROM(讀ROM); </p><p> 2)Match ROM(符合ROM);</p><p> 3)Search ROM(搜索ROM);</p><p> 4)Skip ROM(跳過ROM);<
60、/p><p> 5)Alarm Search(告警搜索);</p><p> 這些命令對每一器件的64位激光ROM 部分進行操作,如果在單線上有許多器件,那么可以挑選出一個特定的器件,并給總線上的主機指示存在多少器件及其類型。在成功地執(zhí)行了ROM 操作序列之后,可使用存貯器和控制操作,然后主機可以提供六種存貯器和控制操作命令之一。</p><p> 一個控制操作命
61、令指示DS1820 完成溫度測量。該測量的結果將放入DS1820 的高速暫存(便箋式)存貯器(Scratchpad memory),通過發(fā)出讀暫存存儲器內容的存儲器操作命令可以讀出此結果。每一溫度告警觸發(fā)器TH和TL構成一個字節(jié)的EEPROM。如果不對DS1820 施加告警搜索命令,這些寄存器可用作通用用戶存儲器使用存儲器,操作命令可以寫TH 和TL 對這些寄存器的讀訪問。所有數據均以最低有效位在前的方式被讀寫。</p>
62、<p><b> 寄生電源</b></p><p> 方框圖(圖1)示出寄生電源電路。當I/O或VDD 引腳為高電平時,這個電路便“取”得電源。只要符合指定的定時和電壓要求,I/O將提供足夠的功率(標題為“單總線系統”一節(jié))。寄生電源的優(yōu)點是雙重的:</p><p> 1)利用此引腳,遠程溫度檢測無需本地電源;</p><p>
63、 2)缺少正常電源條件下也可以讀ROM;</p><p> 為了使DS1820能完成準確的溫度變換,當溫度變換發(fā)生時,I/O 線上必須提供足夠的功率。因為DS1820 的工作電流高達1mA ,5K 的上拉電阻將使I/O 線沒有足夠的驅動能力。如果幾個SD1820 在同一條I/O 線上而且同時變換,那么這一問題將變得特別尖銳。</p><p> 有兩種方法確保DS1820 在其有效變換
64、期內得到足夠的電源電流。第一種方法是發(fā)生溫度變換時,在I/O 線上提供一強的上拉。如圖2所示,通過使用一個MOSFET 把I/O 線直接拉到電源可達到這一點。當使用寄生電源方式時VDD 引腳必須連接到地。</p><p> 向DS1820 供電的另外一種方法是通過使用連接到VDD 引腳的外部電源,如圖3 所示這種方法的優(yōu)點是在I/O 線上不要求強的上拉??偩€上主機不需向上連接便在溫度變換期間使線保持高電平。這就
65、允許在變換時間內其它數據在單線上傳送。此外,在單線總線上可以放置任何數目的DS1820 ,而且如果它們都使用外部電源,那么通過發(fā)出跳過(Skip) ROM 命令和接著發(fā)出變換(Convert) T 命令,可以同時完成溫度變換。注意只要外部電源處于工作狀態(tài),GND(地引)腳不可懸空。</p><p> 在總線上主機不知道總線上DS1820 是寄生電源供電還是外部VDD 供電的情況下,在DS1820 內采取了措施來
66、通知采用的供電方案。總線上主機通過發(fā)出跳過(Skip)ROM 的操作約定,然后發(fā)出讀電源命令,可以決定是否有需要強上拉的DS1820 在總線上。在此命令發(fā)出后,主機接著發(fā)出讀時間片。如果是寄生供電,DS1820 將在單線總線上送回“0”;如果由VDD 引腳供電,它將送回1。如果主機接收到一個“0”,它知道它必須在溫度變換期間在I/O 線上供一個強的上拉。有關此命令約定的詳細說明見存貯器命令功能一節(jié)。</p><p&g
67、t;<b> 運用——測量溫度</b></p><p> SDS1820 通過使用在板(on-board)溫度測量專利技術來測量溫度。溫度測量電路的方框圖見圖4 所示。</p><p> DS1820 通過門開通期間內低溫度系數振蕩器經歷的時鐘周期個數計數來測量溫度,如果在門開通期結束前計數器達到零,那么溫度寄存器—它也被予置到-55℃的數值—將增量,指示溫度高
68、于-55℃。</p><p> 同時,計數器用鈄率累加器電路所決定的值進行予置。為了對遵循拋物線規(guī)律的振蕩器溫度特性進行補償,這種電路是必需的。時鐘再次使計數器計值至它達到零。如果門開通時間仍未結束,那么此過程再次重復。</p><p> 鈄率累加器用于補償振蕩器溫度特性的非線性,以產生高分辯率的溫度測量。通過改變溫度每升高一度,計數器必須經歷的計數個數來實行補償。因此,為了獲得所需的
69、分辯率,計數器的數值以及在給定溫度處每一攝氏度的計數個數(鈄率累加器的值)二者都必須知道。</p><p> 此計算在DS1820 內部完成以提供0.5℃的分辯率。溫度讀數以16位、符號擴展的二進制補碼讀數形式提供表1 說明輸出數據對測量溫度的關系。數據在單線接口上串行發(fā)送。DS1820 可以以0.5℃ 的增量值,在0.5℃至+125℃的范圍內測量溫度。對于應用華氏溫度的場合必須使用查找表或變換系數。</
70、p><p> 注意在DS1820 中溫度是以1/2 LSB 最低有效位形式表示時產生以下9 位格式:</p><p> 最高有效(符號)位被復制到存儲器內兩字節(jié)的溫度寄存器中較高MSB 的所有位,這種“符號擴展”產生了如表1 所示的16 位溫度讀數。</p><p> 以下的過程可以獲得較高的分辯率。首先,讀溫度,并從讀得的值截去0.5℃位(最低有效位)。這個值便
71、是TEMP_READ。然后可以讀留在計數器內的值。此值是門開通期停止之后計數剩余</p><p> (COUNT_REMAIN)。所需的最后一個數值是在該溫度處每一攝氏度的計數個數(COUNT_PER_C)。于是,用戶可以使用下式計算實際溫度:</p><p><b> 硬件接法</b></p><p> 根據定義,單線總線只有一根線:這
72、一點是重要的,即線上的第一個器件能在適當的時間驅動該總線。為了做到這一點,第一個連接到單線總線上的器件必須具有漏極開路或三態(tài)輸出。DS1820 的單線接口(I/O 引腳是漏極開路的,其內部等效電路如圖9 所示)多站multidrop 總線由單線總線和多個與之相連的從屬器件組成。單線總線要求近似等于5k的上拉電阻。</p><p> 單線總線的空閑狀態(tài)是高電平。不管任何原因,如果執(zhí)行需要被掛起,那么,若要重新恢復
73、執(zhí)行,總線必須保持在空閑狀態(tài)。如果不滿足這一點且總線保持在低電平時間大于480us,那么總線上所有器件均被復位。</p><p> 存在脈沖(presence pulse)使總線主機知道DS1820 在總線上并已準備好工作。詳情見“單線信號”一節(jié)。</p><p><b> 處理順序</b></p><p> 經過單線接口訪問DS1820
74、 的協議(protocol)如下:</p><p><b> ·初始化</b></p><p><b> ·ROM 操作命令</b></p><p><b> ·存貯器操作命令</b></p><p><b> ·處理/
75、數據</b></p><p><b> 初始化</b></p><p> 單線總線上的所有處理均從初始化序列開始。初始化序列包括總線主機發(fā)出一復位脈沖,接著由從屬器件送出存在脈沖。</p><p> 2.8.2.2 ROM 操作命令</p><p> 一旦總線主機檢測到從屬器件的存在,它便可以發(fā)出器件
76、ROM 操作命令之一。所有ROM 操作命令均為8 位長,這些命令列表如下(參見圖6 的流程圖)。</p><p> ·Read ROM(讀ROM) [33h]</p><p> 此命令允許總線主機讀DS1820 的8 位產品系列編碼,唯一的48 位序列號,以及8 位的CRC。此命令只能在總線上僅有一個DS1820 的情況下可以使用。如果總線上存在多于一個的從屬器件,那么當所有
77、從片企圖同時發(fā)送時將發(fā)生數據沖突的現象(漏極開路會產生“線與”的結果)。</p><p> ·Match ROM(“符合”ROM) [55h]</p><p> “符合”ROM 命令。后繼以64 位的ROM 數據序列,允許總線主機對多點總線上特定的DS1820尋址。只有與64 位ROM 序列嚴格相符的DS1820 才能對后繼的存貯器操作命令作出響應。所有與64位ROM 序列不
78、符的從片將等待復位脈沖。此命令在總線上有單個或多個器件的情況下均可使用</p><p> ·(“跳過”ROM ) [CCh]</p><p> 在單點總線系統中,此命令通過允許總線主機不提供64 位ROM 編碼而訪問存儲器操作來節(jié)省時間。如果在總線上存在多于一個的從屬器件而且在Skip ROM 命令之后發(fā)出讀命令,那么由于多個從片同時發(fā)送數據,會在總線上發(fā)生數據沖突(漏極開路
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論