版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、11.2. BASIC PROPERTIES 2431200.10.20.30.40.50.61 2 3 4 5 6 7 ζFigure 11.5: Normalized electron densities An|χn(z/?F)|2 for the first (1) and second (2)subbands in a triangle potential with the slope F, ?F = (?2/2mF)1/3.v
2、 (for n-type materials), and in-plane quasimomentum k. If the spectrum is degenerate with respect to spin and valleys one can define the spin degeneracy νs and valley degeneracy νv to getg(?) = νsνv(2π)d?n?ddk δ (? ? En,
3、k) .Here we calculate the number on states per unit volume, d being the dimension of the space. For 2D case we obtain easilyg(?) = νsνvm2π?2?n Θ(? ? En) .Within a given subband it appears energy-independent. Since there
4、can exist several subbands in the confining potential (see Fig. 11.6, inset), the total density of states can be represented as a set of steps, as shown in Fig. 11.6. At low temperature (kT ? EF) all the states are fille
5、d up to the Fermi level. Because of energy-independent density of states the sheet electron density is linear in the Fermi energy,ns = N νsνvmEF2π?2 + const11.2. BASIC PROPERTIES 245Figure 11.7: Density of states for a q
6、uasi-1D system (solid line) and the number of states (dashed lines).Motion in a perpendicular magnetic field2DEG in a perpendicular magnetic field gives an example of 0-dimensional electronic sys- tem. Indeed, according
7、to the classical theory the Hamilton’s function of a charged particle in an external electromagnetic field isH = 12m? p ? ecA ?2 + eφ ,where φ is the scalar and A is the vector potential of the field, and p is the genera
8、lized momentum of the particle. According to the rules of quantum mechanics, one should replace the canonical momentum p by the operatorp → ? p = ?i??and add also an extra spin term ?µH where µ = µB? s/s.
9、Here µB = e/2mc is the Bohr magneton while ? s is the spin operator. Generally, interaction with periodic potential of the crystalline lattice leads to renormalization of the spin splitting µB → µ=gfµ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- [2-2]固體物理導(dǎo)論 introduction to solid state physics
- [2-1]固體物理導(dǎo)論 introduction to solid state physics
- [2-1]固體物理導(dǎo)論 introduction to solid state physics
- ibach,solid-state physics(4ed)
- 固體物理ch2
- 固體物理導(dǎo)論部分考前復(fù)習(xí)試題
- 2-3-2-4-2-5(黃昆-固體物理)-教案
- 809《固體物理》
- 固體物理復(fù)習(xí)材料
- 固體物理習(xí)題整理
- 固體物理40題
- 固體物理題庫
- 固體物理復(fù)習(xí)材料
- 固體物理答案資料
- 固體物理考試習(xí)題
- 固體物理課后答案
- 固體物理基本概念
- 固體物理習(xí)題及解答
- 固體物理題庫匯總
- 級固體物理題庫
評論
0/150
提交評論