版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、走進(jìn)新課程 笑迎新高考銀川一中康淑霞2010.9.18,第一篇:新課程下的高考備考策略第二篇:走進(jìn)新課程 感受新理念,【新課程下的高考備考策略】,考試說明的結(jié)構(gòu)“大綱”與“說明”的關(guān)系寧夏高考試卷分析新課程試題分析高考備考方略具體措施,一. 全國普通高校招生統(tǒng)一考試大綱(寧夏 海南使用)說明的結(jié)構(gòu),1.命題的指導(dǎo)思想2.考試形式與試卷結(jié)構(gòu)3.考核目標(biāo)與要求4.考試內(nèi)容和要求5.題型示例6.
2、題型示例參考解答,※關(guān)于考核目標(biāo)與要求,1.在知識要求方面 2. 在能力要求方面 3.在考察要求方面 ※關(guān)于考試內(nèi)容 1.函數(shù)與導(dǎo)數(shù) 2.數(shù)列 3.不等式 4.三角函數(shù) 5.立體幾何 6.解析幾何與平面向量 7.概率統(tǒng)計與計數(shù)原理,二.普通高等學(xué)校招生全國統(tǒng)一考試“大綱”與“說 明”的關(guān)系1
3、.明確《考試大綱》的定位. 2.明確《考試大綱》和《考試說明》的關(guān)系 3.處理好課程標(biāo)準(zhǔn)中必修模塊和選修模塊的考查.,三.全國普通高校招生統(tǒng)一考試(寧夏 海南卷) 數(shù)學(xué)科試卷1.結(jié)構(gòu) 2、試題類型3、難度4.關(guān)于“選考題”的設(shè)置,要求:(1)理解相似三角形的定義與性質(zhì),了解平行截割定 理. (2)會證以下定理: ①直角三角形射影定理; ②圓周角定
4、理; ③圓的切線判定定理與性質(zhì)定理; ④相交弦定理; ⑤圓內(nèi)接四邊形的性質(zhì)定理與判定定理; ⑥切割線定理.,選考題設(shè)計,選修4-1《幾何證明選講》,課本(人教A版,下同)P22例1:如圖,AB是⊙O的直徑,C為⊙O上的點,D 是C在AB上的射影,AD=2,DB=8.求CD.,,P32例1:如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:DE是⊙O的切線.,P33例2:如
5、圖,AB是⊙O的直徑,C為⊙O上的點,AD和過C的切線互相垂直,垂足為點D.求證:CA平分∠BAD.,背景,如圖,AB是⊙O的直徑,C,F(xiàn)為⊙O上的點,CA是∠BAF的角平分線,過點C作CD⊥AF,交AF的延長線于D點, CM⊥AB, ,垂足為點M.(Ⅰ)求證:DC是⊙O的切線;(Ⅱ)求證:AM MB=DF DA,,主要考查直角三角形射影定理, 圓周角定理, 圓的切線判定定理與性質(zhì)定理,切割線定理.,,考試要求:(1)了解坐標(biāo)系
6、的作用,了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.(2)了解極坐標(biāo)的基本概念,會在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.(3)能在極坐標(biāo)系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)表示的極坐標(biāo)方程.(4)了解參數(shù)方程,了解參數(shù)的意義.(5)能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和橢圓的參數(shù)方程.,,選修4-4《坐標(biāo)系與參數(shù)方程》,背景,,P27習(xí)題:4(4)把參數(shù)方程化為普通方程,并說
7、明是什么曲線.,,P41習(xí)題:1設(shè)直線L過點M(1,5),傾斜角 ,求直線L的參數(shù)方程。,,P15例3:設(shè)點P的坐標(biāo) ,直線L過點P與極軸所成角是 ,求直線l的極坐標(biāo)方程。,,,已知圓錐曲線(是參數(shù))和定點A(0, , 是圓錐曲線的左,右焦點,(Ⅰ)求經(jīng)過 點 垂直于直線 的直線的參數(shù)方程;(Ⅱ)以坐標(biāo)原點為極點, x軸的正半軸為極軸建立極坐標(biāo)系,求直線
8、的極坐標(biāo)方程.,,,,,,,主要考查極坐標(biāo)和直角坐標(biāo)的互化.直線和橢圓的參數(shù)方程.,選考題設(shè)計,考試要求:(1)理解絕對值的幾何意義,并了解下列不等式成立的幾何意義 及取等號的條件:,,;,,.(2) 會利用絕對值的幾何意義求解以下類型的不等式.,.(3)通過一些簡單問題了解證明不等式的基本方法 : 比較法、綜合法,分析法.,,選修4-5《不等式選講》,,,背景,以課本第20頁習(xí)題1,求證:
9、 ,習(xí)題8解不等式 .以及第17頁例5為素材經(jīng)加工得到:,,,對于任意的實數(shù)a ( )和b,不等式恒成立,求實數(shù)x的取值范圍.,,,主要考查的證明和不等式的求解 .,,,,5.寧夏2007年高考適應(yīng)性考試數(shù)學(xué)試題解答題結(jié)構(gòu),17題.平面向量與三角函數(shù) 18題.立體幾何19題.概率與統(tǒng)計20題.解析幾
10、何21題.導(dǎo)數(shù)和數(shù)列,,07年,解析幾何試題的設(shè)計,以選修2-1課本第47頁題7和58頁題5為背景: 如圖:圓O的半徑為定長r,A是圓O內(nèi)(或外)的一個定,P是圓上的任意一點,線段AP的垂直平分線l和半徑OP(或直線OP)相交于點Q, 當(dāng)點P在圓上運動時,點Q的軌跡是什么?,已知,點C為圓 的圓心,點A(1,0),P是圓上的動點,點Q在圓的半徑CP上,且.(Ⅰ) 當(dāng)點P在圓上運動時,求點Q的軌跡方程;
11、(Ⅱ) 若直線 與(Ⅰ)中所求點Q的軌跡交于不同兩點F,H,是坐標(biāo)原點,且 時,求△FOH的面積取值范圍 .,,,,,,,本題主要考查直線、圓、橢圓和不等式等基本知識,考查平面解析幾何的基本方法,考查運算能力和綜合解題能力。,概率統(tǒng)計試題的設(shè)計,班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班25名女同學(xué),15名男同學(xué)中隨機抽取一個容量為8的樣本進(jìn)行分析.(Ⅰ)如果按性別
12、比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出算式即可,不必計算出結(jié)果).(Ⅱ)隨機抽取8位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是: 60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排序是:72、77、80、84、88、90、93、95.(1) 若規(guī)定85分以上(包括85分)為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;(2) 若這8位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實上對應(yīng)如下表:,根據(jù)上表數(shù)據(jù)用變量y與
13、x的相關(guān)系數(shù)或散點圖說明物理成績y與數(shù)學(xué)成績x之間是否具有線性相關(guān)性?如果具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01).如果不具有線性相關(guān)性,請說明理由.,本題主要考查分層抽樣的概念,古典概率的計算,線性回歸思想的查閱,考查運用概率統(tǒng)計知識進(jìn)行數(shù)據(jù)處理的能力。,導(dǎo)數(shù)試題的設(shè)計,《課程標(biāo)準(zhǔn)》在①“導(dǎo)數(shù)的概念及其幾何意義”,注重從過程中體會,理解,弱化了形式化的定義。②導(dǎo)數(shù)的運算方面,對計算的要求明顯降低;③導(dǎo)數(shù)的應(yīng)用方面,
14、要求有很大的提高,而且具體;④定積分與微積分基本定理方面,重視從過程體會,了解概念,對計算的要求有所降低。,因此《課程標(biāo)準(zhǔn)》強調(diào)了對概念本質(zhì)的認(rèn)識(導(dǎo)數(shù)是刻畫事物變化率的數(shù)學(xué)模型),提高了對應(yīng)用性的要求,降低了對計算的要求,突出了導(dǎo)數(shù)作為一種數(shù)學(xué)思想,方法的工具性作用。,,本題考查函數(shù)的導(dǎo)數(shù),函數(shù)極值的判定,二次函數(shù)與二次方程等基礎(chǔ)知識的的綜合運用.,數(shù)列的試題設(shè)計,教學(xué)要求上的變化,數(shù)列的試題設(shè)計,06高考:設(shè)數(shù)列{an}的前n項和為
15、Sn,且方程x2-anx-an=0有一根為Sn-1,n=1,2,3,….(Ⅰ)求a1,a2;(Ⅱ){an}的通項公式.,由題設(shè)(Sn-1)2-an(Sn-1)-an=0,即 Sn2-2Sn+1-anSn=0.即:,,,選修2-2第94頁B組1題:設(shè)數(shù)列{an}的前n項和為Sn,a1=,,滿足,計算,并猜想Sn的表達(dá)式。,,各項均為正數(shù)的數(shù)列,的前n項和為Sn, 函數(shù),.(其中p,q均為常數(shù),且p>q>0), 當(dāng),
16、=,時,函數(shù),取得極小值.點,均在函數(shù),的圖象上(其中,是函數(shù),的導(dǎo)函數(shù)).(Ⅰ) 求,(Ⅱ) 求數(shù)列,的通項公式;,的前,項和,.,(Ⅲ)記,,求數(shù)列,.,的值.,三角函數(shù)和平面向量試題設(shè)計,設(shè)向量,(Ⅰ) 若,,求tan,(Ⅱ) 求函數(shù),的最大值及相應(yīng),的值.,的值,,本試題在分析06高考試題的基礎(chǔ)上,以必修4第160習(xí)題11改編得到。,已知函數(shù)f(x)=2sinx(sinx+cosx)求f(x)的最小正周期和最大值,算法試題設(shè)
17、計,根據(jù)必修3第40頁第1題:畫程序框圖,對于輸入的x的值,輸出相應(yīng)的y值。修改得到。,,選擇12題試題設(shè)計,試題素材是課本必修1第三章章頭圖,必修5第二章章頭圖和必修5第37頁閱讀思考。,,12. 如果一對兔子每月能生產(chǎn)一對小兔子(一雌一雄),而每一對小兔子在它出生的第三個月里,又能生產(chǎn)一對小兔子.假定在不發(fā)生死亡的情況下,由一對初生的小兔子從第一個月開始,如果用,表示初生小兔子的對數(shù),,表示第n個月的兔子總對數(shù),,記,,,,那么以
18、下結(jié)論正確的是,A. 是與n無關(guān)的常量,B. 是與n有關(guān)的變量,且既有最大值,又有最小值,C. 是與n有關(guān)的變量,且有最小值,但無最大值 .,D. 是與n有關(guān)的變量,且有最大值,但無最小值,四.新課程試題分析,1.注重基礎(chǔ)知識、基本方法和主干知識的考查2、文理科試題難度設(shè)計合理3、加大新增課程內(nèi)容在試卷中的比例4、繼續(xù)強調(diào)數(shù)學(xué)的應(yīng)用性,體現(xiàn)新課程理念5、試題體現(xiàn)新課程中倡導(dǎo)積極主動、勇于探索
19、 的學(xué)習(xí)方式6、注重對知識的整體把握7、核心知識,重點考查8、注重數(shù)學(xué)能力,注重自主學(xué)習(xí)9、數(shù)學(xué)思想是數(shù)學(xué)的靈魂10、不再提“有利于中學(xué)教學(xué)”,解答題考查的知識點,2、文理科試題設(shè)計趨于合理07、08、09年文理科試題數(shù)量變化統(tǒng)計如下:,,3、加大新增課程內(nèi)容在試卷中的比例,傳統(tǒng)新增數(shù)學(xué)內(nèi)容:導(dǎo)數(shù)、概率統(tǒng)計、向量等 .《考試大綱》要求的:全稱量詞與存在量詞、冪函數(shù)、函數(shù)與方程、三視圖、算法初步、幾何概型、合情推理與演繹推
20、理、線性回歸方程、定積分等.這些新增內(nèi)容07年約有66分,占試卷總分的44%,08年約有67分,占試卷總分的44%.09年約有64分,占試卷總分的43%.,4、繼續(xù)強調(diào)數(shù)學(xué)的應(yīng)用性,體現(xiàn)新課程理念,07年試題文理科各出現(xiàn)一小兩大三個應(yīng)用題,合計29分,約占總分的19%.08年試題文理科各出現(xiàn)兩小一大三個應(yīng)用題,合計22分,約占總分的15%. 09年試題文理科各出現(xiàn)兩大應(yīng)用題,合計24分,約占總分的16%. 2010年出現(xiàn)一大一小
21、應(yīng)用題合計17分.,,(2007)11.甲、乙、丙三名射箭運動員在某次測試中各射箭20次,三人的測試成績?nèi)缦卤砑椎某煽儹h(huán)數(shù)78910頻數(shù)5555 乙的成績環(huán)數(shù)78910頻數(shù)6446丙的成績環(huán)數(shù)78910頻數(shù)4664分別表示甲、乙、丙三名運動員這次測試成績的標(biāo)準(zhǔn)差,則有( ?。粒拢?C. D.17.(本小題滿分12分)如圖,測量河對岸的塔高時,可以選與塔底在同一水平面內(nèi)的兩
22、個測點與.現(xiàn)測得,并在點測得塔頂?shù)难鼋菫?,求塔高.?008)9、甲、乙、丙3位志愿者安排在周一至周五的5天中參加某項志愿者活動,要求每人參加一天且每天至多安排一人,并要求甲安排在另外兩位前面。不同的安排方法共有( )A. 20種 B. 30種 C. 40種D. 60種,.,,,,,,,,,,,,16、從甲、乙兩品種的棉花中各抽測了25根棉花的纖維長度(單位:mm),結(jié)果如下:由以上
23、數(shù)據(jù)設(shè)計了如下莖葉圖:根據(jù)以上莖葉圖,對甲乙兩品種棉花的纖維長度作比較,寫出兩個統(tǒng)計結(jié)論:①____________________________________________________________________________②________________________________________________________ 19、(本小題滿分12分)A、B兩個投資項目的利潤率分別為隨機變量X1和
24、X2。根據(jù)市場分析,X1和X2的分布列分別為X15%10%X22%8%12%P0.80.2P0.20.50.3(1)在A、B兩個項目上各投資100萬元,Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差DY1、DY2;(2)將x(0≤x≤100)萬元投資A項目,100-x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和。求f(x)的最小值,并指出x為何值時,f(x)取到最小值。(注:D(aX +
25、b) = a2DX),,(2010)(6)某種種子每粒發(fā)芽的概率都為0.9,現(xiàn)播種了1000粒,對于沒有發(fā)芽的種子,每粒需再補種2粒,補種的種子數(shù)記為X,則X的數(shù)學(xué)期望為(A)100 (B)200 (C)300 (D)400(19)(本小題12分)為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:是否需要志愿 性別男女需
26、要4030不需要160270估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人,需要志愿幫助的老年人的比例?說明理由,5.試題體現(xiàn)新課程中倡導(dǎo)積極主動、勇于探索的學(xué)習(xí)方式,體現(xiàn)研究性學(xué)習(xí),體現(xiàn)過程與方法,答案開放。如08年理科第(16)題。題目要求學(xué)生通過莖葉圖寫出甲、乙兩品種棉花纖維長度的2個統(tǒng)計結(jié)論
27、,在提供的參考答案中給出了4個結(jié)論,分別從甲、乙兩品種棉花纖維長度的均值、方差、中位數(shù)、標(biāo)準(zhǔn)差等方面論述,只要考生答對2個結(jié)論就得滿分。通過試卷的批閱我們發(fā)現(xiàn),大部分學(xué)生都能夠給出至少一個正確的統(tǒng)計結(jié)果,而且部分考生還以其它論述方式給出正確答案;另外此題理科考生比文科考生的解答相對較好。,6、注重對知識的整體把握,不一味追求課時比例與考點分值的統(tǒng)一,例如按《課標(biāo)》要求三角函數(shù)(包括解三角形)共32課時,數(shù)列共12課時;08年考題(理科)
28、中三角函數(shù)(包括解三角形)15分, 數(shù)列17分。而從知識特點來說,數(shù)列比三角更靈活,對能力要求更高。 08年考題(理科12題、文科18題)中通過三視圖,計算最值問題,計算體積,并證明線面平行關(guān)系 。 09年理科數(shù)學(xué)19題(立體幾何題)將證明、計算、探索性問題進(jìn)行綜合考查,7、核心知識,重點考查,08年試題中二次函數(shù)性質(zhì)反復(fù)滲透。07年試題中關(guān)于“空間想象能力”的考查有4道題,8題、12題、17題、18題共34分占
29、23%運超出課時比例。2010試題中關(guān)于“空間想象能力”的考查有3道題,10題.14題.18題08年試題中關(guān)于“向量”知識的考查有4道題,8題、13題、18題、20題共34分占23%。09年考題加大了對最值的考查,整份試卷至少有22分是求最值問題。,8、注重數(shù)學(xué)能力,注重自主學(xué)習(xí),讓思路清晰、思維敏捷、善于總結(jié)的“聰明學(xué)生”得高分,讓死讀書,讀死書的“笨學(xué)生”考不好。思維量、運算量增大。08、09.2010年試題幾乎每個題目對考生
30、的思維能力、運算能力都提出了一定的要求,更重要的是考題要求學(xué)生能夠熟練運用基礎(chǔ)知識,迅速解決碰到的問題。而大部分考生達(dá)不到這個要求。如理科第(19)題(概率統(tǒng)計),不僅要有很強運算能力,而且要對“隨機變量線性關(guān)系方差”理解透徹。象理科第(19)題、第(21)題等諸如此類的中學(xué)“邊界點”、“怪題”,學(xué)生只有通過自主學(xué)習(xí)才能達(dá)到??坷蠋熢谡n堂上的講授是不可能。這是本次考生普遍喊“難”的主要原因。通過對三年高考題的分析可以看出,能力是決定成敗
31、的關(guān)鍵。,9、數(shù)學(xué)思想是數(shù)學(xué)的靈魂 用數(shù)學(xué)思想分析、解決數(shù)學(xué)問題是每個命題者命制每一道數(shù)學(xué)試題的主導(dǎo)思想.09年整個試卷最大限度地突出和貫穿了這一觀念注: (帶“*”的表示占一部分的內(nèi)容),10、不再提“有利于中學(xué)教學(xué)”,只堅持兩個有利于:“有利于大學(xué)選拔,有利于中學(xué)課程改革”, 在與大學(xué)知識聯(lián)系緊密的邊界點命題。如08年理科第(18)題(立體幾何),如果要確定點P的位置(坐標(biāo))須知道正方體對角線(空間直線)方程—背景
32、是空間解析幾何,而中學(xué)教學(xué)中定點通常在坐標(biāo)平面上。,五.備考方略(一) 教學(xué)建議,1、加強對《考試大綱》的研究,把握正確的方向,2、與時俱進(jìn)地認(rèn)識“雙基”,3、注重新增內(nèi)容的教學(xué),4、重視數(shù)學(xué)思想方法, 強化對主干知識的訓(xùn)練,5.注重理論聯(lián)系實際,6.充分研究新課程試題的特點,7.關(guān)注數(shù)學(xué)思想方法,中學(xué)階段主要思想有-----化歸與轉(zhuǎn)化,函數(shù)與方程,數(shù)形結(jié)合,分類討論與整合,算法思想.另外,用樣本估計總體、最小二乘法、獨立性檢驗的推斷
33、原理和假設(shè)檢驗等思想.,函數(shù)與方程的思想,2010年高考試題:(3)(8)(12) (15) (20)(21(22),數(shù)形結(jié)合的思想,2010年高考試題:(4) (7) (11) (13) (24),分類討論的思想2010年高考試題: (21),化歸思想2010年高考試題: (5) (16) (17)(18),算法思想2010年高考試題: (7),樣本估計總體的思想及獨立性檢驗的思想2010年高考試題: (19),(二).歷年
34、高考題分布統(tǒng)計,,,,,,,,,(三)總結(jié)規(guī)律 引領(lǐng)復(fù)習(xí)方向 1.試題的結(jié)構(gòu),2.高考考什么,3.教師的命題策略,4.注意新題型的考查:(條件探究型.結(jié)論開放型.信息遷移型.類比歸納型.結(jié)論存在型),例2:(09年福建理科8)已知某運動員每次投籃命中的概率低于40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;
35、再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )A.0.35 B 0.25
36、C 0.20 D 0.15分析:課標(biāo)要求“了解隨機數(shù)的意義,能運用模擬方法估計概率”.因為隨機數(shù)的產(chǎn)生需要計算器或計算機來產(chǎn)生,所以在編擬試題時,應(yīng)該給出一組隨機數(shù),學(xué)生只要了解隨機數(shù)的意義,就會做題.實際上,在隨機數(shù)的教學(xué)中我們可能往往一帶而過,覺得產(chǎn)生隨機數(shù)的過程太麻煩,離不開計算器.這幾年寧夏卷沒有涉及到這方面考題,要特別注意!,請注意下列題型,六.具體措施,第一階段:鞏固雙基 構(gòu)建知識網(wǎng)絡(luò),,第二階
37、段:專題訓(xùn)練 體會數(shù)學(xué)思想方法的應(yīng)用,第三階段:模擬訓(xùn)練 完善提高,第四階段:熱身訓(xùn)練 查漏補缺,關(guān)注學(xué)生的是:,1.強化運算“四性”提高運算能力(1)強化運算的合理性 (2)強化運算的準(zhǔn)確性(3)強化運算的熟練性(4)強化運算的簡捷性2.懂、會、對、快、好全面要求,全面訓(xùn)練.3.審題謹(jǐn)慎、設(shè)計周密、推理嚴(yán)密、計算準(zhǔn)確、表述清楚、檢驗有效,各個環(huán)節(jié),應(yīng)對有略。4.技術(shù)矯正,規(guī)范化提醒.,考前寄語:①我易人易我不
38、大意,我難人難我不畏難;②會做的題一題不錯,該拿的分一分不丟;③先易后難,先熟后生;④一慢一快:審題要慢,做題要快;⑤不能小題難做,小題大做, 而要小題小做,小題巧做;⑥考試不怕題不會,就怕會題做不對;⑦基礎(chǔ)題拿滿分,中檔題拿足分,難題力爭多得分,似曾相識題力爭不失分;⑧對數(shù)學(xué)解題有困難的考生的建議:立足中下題目,力爭高上水平,有時“放棄”是一種策略,【走進(jìn)新課程 感受新理念】,一.必修課程的定位與要求,數(shù)學(xué)1集合
39、183;定位: 仍將集合作為一種語言來學(xué)習(xí)。使學(xué)生學(xué)會使用最基本的集合語言表達(dá)有關(guān)的數(shù)學(xué)對象,發(fā)展運用數(shù)學(xué)語言進(jìn)行交流的能力。·變化: 1、強調(diào)三種語言(自然語言、圖形語言、集合語言)表示相應(yīng)問題的數(shù)學(xué)內(nèi)容。 2、在具體情境中,學(xué)習(xí)集合中的概念。 3、對集合中的“三性”(確定性、無序性、互異性)的講解不宜編制一些繁難的偏題。,函數(shù)概念與基本初
40、等函數(shù),·加強(1)函數(shù)模型的背景和應(yīng)用的要求(2)知識之間的聯(lián)系(3)數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想方法學(xué)習(xí)的要求(4)與信息技術(shù)整合的要求·削弱(1)對定義域、值域的過關(guān)繁難的尤其是人為的過于技巧化的訓(xùn)練,避免人為編制有關(guān)的難題。(2)反函數(shù)的內(nèi)容。(3)對數(shù)函數(shù)的內(nèi)容。·講法上的處理先講函數(shù),再講映射。,數(shù)學(xué)2,對內(nèi)容設(shè)置的說明: 幾何內(nèi)容分三個層次設(shè)計第一層次:
41、必修課程中的幾何方體幾何初步、解析幾何初步、平面向量解三角形等。第二層次:選修系列1、系列2的幾何圓錐曲線與方程、空間向量與立體幾何。第三層次:選修系列3、系列4中的幾何幾何證明選講等。,立體幾何初步,·幾何定位: 立體幾何定位于培養(yǎng)和發(fā)展學(xué)生握圖形的能力,空間想象與幾何直覺的能力以及邏輯推理能力。·幾何內(nèi)容處理方式: 以前:點……線……面……體(局部到整體)
42、 現(xiàn)在:整體到局部 突出:直觀感知、操作確認(rèn)、思辯論證、度量計算。·立體幾何分層設(shè)計 本模塊中 (1)空間幾何體 (2)點線面間的位置關(guān)系 公理、判定定理、性質(zhì)定理 (3)運用已獲得的結(jié)論證明一些空間位置關(guān)系的簡單命題。 說明:進(jìn)一步的論證與度量將在選修系列2中用向量處理(包括三垂線定理),解析幾何初步,·內(nèi)容結(jié)構(gòu) (1)直線與方程
43、 (2)圓與方程 (3)在平面解析幾何初步的學(xué)習(xí)過程中, 體會用代數(shù)方法處理幾何問題的方法。·增加內(nèi)容:空間直角坐標(biāo)系 信息技術(shù)的應(yīng)用,數(shù)學(xué)3算法初步,·設(shè)置算法的依據(jù)·內(nèi)容結(jié)構(gòu): (1)算法的含義、程序框圖 (2)基本算法語句 (3)通過讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。·提出的要求:
44、 在教學(xué)中,應(yīng)通過實例來說明由算法到計算機使用的算法的過渡過程,從而說明學(xué)習(xí)算法的必要性。 盡可能的讓學(xué)生上機實現(xiàn),或模擬上機實現(xiàn)。要體現(xiàn)數(shù)學(xué)與算法的有機結(jié)合,使學(xué)生理解數(shù)學(xué)在利用解決算法問題中的作用,理解算法對數(shù)學(xué)提出的要求。要有意識地讓學(xué)生體公算法的思想,提高他們的邏輯思維能力。,統(tǒng)計與概率,·教育價值: 隨著社會的發(fā)展,統(tǒng)計觀察和隨機的思想將成為現(xiàn)代
45、社會一種普遍適用并強有力的思維方式,有助于學(xué)生形成科學(xué)的世界觀與方法論。·要求上的變化: (1)對統(tǒng)計中的概念應(yīng)結(jié)合具體問題進(jìn)行描述性的說明,不應(yīng)追求嚴(yán)格的形式化定義。 (2)統(tǒng)計教學(xué)必須通過案例來進(jìn)行。 (3)古典概型的數(shù)學(xué)應(yīng)通過實例理解古典型的特征,不要把重點放在“如何計數(shù)”上。 (4)鼓勵學(xué)生盡可能運用計算機器、計算機來處理數(shù)據(jù),進(jìn)行模擬活動,更好地體會統(tǒng)計思想
46、和概率的意義。·新增內(nèi)容: (1)莖葉圖 例:甲乙兩藍(lán)球運動員每場比賽的得分情況如下: 甲乙085213465423679766113389944051甲:12,15,24,25,31,31,36,36,37,39,44,49,50。 乙:8,13,14,16,23,26,28,33,38,39,51 (2)幾何概型
47、 (3)概率的應(yīng)用,數(shù)學(xué)4三角函數(shù).平面向量.三角恒等變換,這部分知識是高中數(shù)學(xué)的傳統(tǒng)內(nèi)容,《標(biāo)準(zhǔn)》對其中的一些內(nèi)容作了新的處理,在要求上也有變化。(1)加強了向量與三角函數(shù)的聯(lián)系。 將向量與三角函數(shù)設(shè)計在一個模塊中,主要是為了通過向量溝通代數(shù)、向量與三角函數(shù)的聯(lián)系,體現(xiàn)向量在處理三角函數(shù)問題中的工具作用。(2)加強了向量的實際應(yīng)用。(3)降低要求的部分任意角、弧度制概念,同角三角函數(shù)的基本關(guān)系式分別由原來的
48、理解、掌握減弱為了解、理解;兩角和與差的正余統(tǒng)、正切公式,二倍角的正余統(tǒng)、正切公式由原來的掌握減弱為能從兩角差的余弦公式導(dǎo)出等。對三角恒等變換,要求以推導(dǎo)積化和差、和差化積、半角公式作為三角恒等變換的基本訓(xùn)練,不要求用積公和差、和差化積、半角公工作復(fù)雜的恒等變形,避免在三角恒等變換上探挖洞。(4)插入數(shù)學(xué)探究或數(shù)學(xué)建?;顒印?數(shù)學(xué)5解三角形,·定位和要求 將三角形作為幾何度量問題來展開。要求運用正
49、弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題,而不必在恒等變形上進(jìn)行過于煩瑣的訓(xùn)練,為發(fā)展數(shù)學(xué)應(yīng)用意識,提高實踐能力創(chuàng)造條件。建議 (1)開展研究性學(xué)習(xí)或探究活動。 (2)教師在拓寬知識面上,要把握好尺度,所選題目盡量能體現(xiàn)《標(biāo)準(zhǔn)》所倡導(dǎo)的理念,注重應(yīng)用價值。,數(shù)列,·定位與要求:保證:基本技能的訓(xùn)練控制:難度和復(fù)雜程度刪減:煩瑣的計算、人為技巧化的難題。改變:紙上常事化題型,花樣翻
50、新地搞偏題、怪題。關(guān)注:學(xué)生對數(shù)列模型本質(zhì)的理解,運用數(shù)列模型解決實際問題的能力。·增加內(nèi)容:與算法知識有機結(jié)構(gòu),加入算法知識的應(yīng)用,體現(xiàn)出信息技術(shù)與數(shù)學(xué)知識的整和,不等式,·變化過去:重在理論閘述、推導(dǎo)和解不等式的技巧訓(xùn)練?,F(xiàn)在:強調(diào)不等式的現(xiàn)實背景和實際應(yīng)用,把不能等式作為刻畫現(xiàn)實世界中不等關(guān)系的數(shù)學(xué)工具,作為描述,刻畫優(yōu)化問題的一種數(shù)學(xué)模型,而不是從數(shù)學(xué)到數(shù)學(xué)的純理論探討。·定位和要求一
51、元二次不等式:注重數(shù)形結(jié)合。一元二次不等式的解法:要求“嘗試投計求解的程度框圖”,融入算法思想。線性規(guī)劃:數(shù)學(xué)思想蘊涵于案例之中,充分關(guān)注案例的作用。均值不等式:要求探索并了解基本不等式的證明過程,會用基本不等式解決簡單的最大(?。┲祮栴},防止陷入煩瑣的計算、人為技巧化的難題。,二.?dāng)?shù)學(xué)課程中的主線,函數(shù)主線,幾何主線,運算主線,算法主線,統(tǒng)計概率主線,數(shù)學(xué)應(yīng)用主線,三.從新舊教材例(習(xí))題的變化感悟新課程理念,1.改變設(shè)問方
52、式.加深概念理解案例1(新教材A版第21頁例3)某種筆記本的單價是5元,買x(x∈{1,2,3,4,5})個筆記本需要y元,試用函數(shù)的三種表示法表示函數(shù)y=f(x)。(老教材第54頁例1)某種筆記本每個5元,買x(x∈{1,2,3,4,5})個筆記本的錢數(shù)記為y(元)。試寫出以x為自變量的函數(shù)y的解析式,并畫出這個函數(shù)的圖象.,2.縮編題干信息、注重數(shù)學(xué)本質(zhì)案例2(新教材A版第23頁例6)某市“招手即?!惫财嚨钠眱r按下列規(guī)則制
53、定:(1)5公里以內(nèi)(含5公里),票價2元;(2)5公里以上,每增加5公里,票價增加1元(不足5公里的按5公里計算).如果某條線路的總里程為20公里,請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)圖象.,案例3(新教材A版第49頁復(fù)習(xí)參考題B組第7題)(中華人民共和國個人所得稅法》規(guī)定,公民全月工資、薪金所得不超過800元的部分不必納稅,超過800元的部分為全月應(yīng)納所得額.此項稅款按下表分段累計計算:全月應(yīng)納稅所得額稅率(%)
54、不得超過500元部分5%超過500元至2000元部分10%超過2000元至5000元的部分15%某人一月份應(yīng)交納此項稅款為26.78元,那么他當(dāng)月的工資、薪金所得是多少?,3.增編探究性問題,培養(yǎng)探究能力案例5(新教材A版第33頁)探究:畫出反比例函數(shù),,這個函數(shù)的定義域1是什么?(2)它在定義域l上的單調(diào)性是怎樣的?證明你的結(jié)論.這道探究題是由老教材第59例3(證明函在(0,+∞)上是減函數(shù))改編而來的.案例6(新教材A版第4
55、3頁習(xí)題 1. 3A組第3題)探究一次函數(shù)y=mx+b(x∈R)的單調(diào)性. 該探究題是由老教材第60頁習(xí)題2.3的第1題(分下列情況說明函數(shù)y=mx+b在(-∞,+∞ )上是否具有單調(diào)性;如果有,是增函數(shù)還是減函數(shù)?(1)m>0;(2)<0)改編而來的. 案例7(新教材A版第91頁復(fù)習(xí)參考題”組第3題),對于函數(shù):(1)探索函數(shù)f(x)的單調(diào)性;(2)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?這是一道新增的探究性習(xí)題.案例8.
56、正切函數(shù)的性質(zhì)和圖象,4.增編新題型,適應(yīng)新變化(1.)信息遷移題案例8(新教材A版第28頁習(xí)題1.2B組第3題)函數(shù)f(x)=[x]的函數(shù)值表示不超過x的最大整數(shù),例如,[-3.5]=-4,[2.1]=2。當(dāng)∈(-2.5,3]時,寫出函數(shù)f(x)的解析式,并作出函數(shù)的圖象.,(2.)開放性問題案例9題1(新教材A版第28頁習(xí)題)函數(shù)r=f(p)的圖象如圖1所示.(1)函數(shù)r=f(p)的定義域可能是什么?(2)函數(shù)r=f(p)的
57、值域可能是什么?(3)略.題2(新教材A版第36頁練習(xí)2)整個上午(8:00-12:00)天氣越來越暖,中午時分(12:00-13:00)一場暴風(fēng)雨使天氣又驟然涼爽了許多.暴風(fēng)雨過后,天氣轉(zhuǎn)暖,直到太陽落山(18:00)才又開始轉(zhuǎn)涼.畫出這一天(8:00-20:00)期間氣溫作為時間函數(shù)的一個可能的圖象,并說出所畫函數(shù)的單調(diào)區(qū)間.,題3(新教材A版第28頁習(xí)題1.2B組第2題)畫出定義域為{x|-3≤x≤8,且x≠5},值域為{y|
58、-1≤y≤2,y≠0}的一個函數(shù)的圖象.(1)如果平面直角坐標(biāo)系中點P(x,y)的坐標(biāo)滿足-3≤x≤8,-1≤y≤2,那么其中哪些點不能在圖象上?(2)將你的圖象和其他同學(xué)的相比較,有什么差別嗎?,(3.)圖表題案例10下圖中哪3個圖象與下述三件事分別吻合得最好?請你為剩下的那個圖象寫出一件事.(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是返回家里找到了作業(yè)本再上學(xué);(2)我騎著車一路勻速行駛,只是在途中遇到一次交通堵塞,耽擱了
59、一些時間;(3)我出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時間開始加速.,(4.)信息技術(shù)整合題 根據(jù)統(tǒng)計,新教材A版在這塊內(nèi)容中共有15個這類例(習(xí))題,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程內(nèi)容整合的思想.,四.高中數(shù)學(xué)課程改革的基本轉(zhuǎn)向:,1、從知識本位轉(zhuǎn)向?qū)W生發(fā)展本位2、從封閉性轉(zhuǎn)向開發(fā)性3、從追求統(tǒng)一轉(zhuǎn)向注意差異,五.課程改革的基本要求——改變教與學(xué)的方式,1.由被動學(xué)習(xí)轉(zhuǎn)變?yōu)樽灾鲗W(xué)習(xí)(自習(xí)課學(xué)生講題)2.
60、由單一學(xué)習(xí)轉(zhuǎn)變?yōu)楹献鲗W(xué)習(xí)(同座位給對方出題)3.由被動學(xué)習(xí)轉(zhuǎn)變?yōu)樘骄繉W(xué)習(xí)(概率的性質(zhì))(2009.6),《概率的基本性質(zhì)》的教學(xué)設(shè)計,教學(xué)過程設(shè)計:一、創(chuàng)設(shè)情景、激發(fā)探究興趣(產(chǎn)歷知識產(chǎn)生過程)1、實驗1:全班每人各取一個同樣的骰子,做10次擲骰子的試驗,每人記錄下試驗結(jié)構(gòu)。請一個同學(xué)把全班同學(xué)的實驗結(jié)果做出統(tǒng)計,填在下表中:項目總次數(shù)頻率實驗出現(xiàn)1點出現(xiàn)5點出現(xiàn)1點或5點2、實驗2:一袋中裝有紅、蘭、黑色小球各一個,全班每個同
61、學(xué)每次有放回的摸出一個小球,共摸10次,請一個同學(xué)記錄試驗結(jié)果。請一個同學(xué)把全班同學(xué)的實驗結(jié)果做出統(tǒng)計,填在下表中:項目總次數(shù)頻率實驗,摸出小紅色小球摸出蘭色小球摸出紅色或蘭色小球3、實驗3:現(xiàn)場統(tǒng)計填表:(全班59人)項目總次數(shù)頻率參加數(shù)學(xué)競賽參加英語競賽參加競賽,二、概率的基本性質(zhì)(水到渠成)1、思考一:(1)在實驗1中,設(shè)“出現(xiàn)1點”為事件A,“出現(xiàn)5點”為事件B,“出現(xiàn)1點或5點”為事件A∪B,那么A∪B與A、 B有何關(guān)
62、系?A,、B之間是什么關(guān)系?(2)在實驗2中,設(shè)“摸到紅球”為事件A,“摸到白球”為事件B,“摸到紅珠或白球”為事補A∪B,則A∪B與A、 B有何關(guān)系?A、 B之間是什么關(guān)系?(3)在實驗3中,設(shè)“參加數(shù)學(xué)競賽開為事件A,“參加英語競賽”為事B, A與B是互斥事件嗎?,2、探究三個實驗中,事件A∪B與A, B的頻率之間的關(guān)系。在實驗1、2中,f(A∪B)=f (A)+f(B).在實驗3中,f (D∪E)≠f (D)+f(E)3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 張家口市第一中學(xué)學(xué)年第一學(xué)期月月考地理
- 河北張家口市第一中學(xué)選聘教師20人方案強化卷9
- 河北張家口市崇禮一中高一期中生物
- 河北張家口第一中學(xué)高二期中政治卷
- 2021年12月河北張家口市第一中學(xué)選聘教師20人方案模擬卷_4
- 2021年12月河北張家口市第一中學(xué)選聘教師20人方案模擬卷_9
- 張家口第一中學(xué)2012年藝術(shù)特長生招生簡章
- 2021屆河北省“五個一名校聯(lián)盟”(張家口一中、唐山一中、保定一中、邯鄲一中、邢臺一中)高考二模數(shù)學(xué)答案
- 2021屆河北省“五個一名校聯(lián)盟”(張家口一中、唐山一中、保定一中、邯鄲一中、邢臺一中)高考二模數(shù)學(xué)答案
- 2021屆河北省“五個一名校聯(lián)盟”(張家口一中、唐山一中、保定一中、邯鄲一中、邢臺一中)高考二模數(shù)學(xué)試題
- 2021屆河北省“五個一名校聯(lián)盟”(張家口一中、唐山一中、保定一中、邯鄲一中、邢臺一中)高考二模數(shù)學(xué)試題
- 2021屆河北省“五個一名校聯(lián)盟”(張家口一中、唐山一中、保定一中、邯鄲一中、邢臺一中)高考二模數(shù)學(xué)試題(含答案)
- 2021屆河北省“五個一名校聯(lián)盟”(張家口一中、唐山一中、保定一中、邯鄲一中、邢臺一中)高考二模數(shù)學(xué)試題(含答案)
- 無錫市第一中學(xué)
- 鶴山市第一中學(xué)
- 2022年度河北省張家口市宣化縣第一中學(xué)高三語文上學(xué)期期末試題含解析
- 2022年度河北省張家口市宣化縣第一中學(xué)高三語文上學(xué)期期末試題含解析
- 鄭州市第一中學(xué)
- themegallerypowertemplate-湛江一中——湛江第一中學(xué)
- 祿豐第一中學(xué)新課程設(shè)置及實施方案
評論
0/150
提交評論