版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> ALGORYTHMS控制速度和斯特雷奇</p><p><b> 作者:</b></p><p><b> 多利安馬克雷亞</b></p><p> 科斯廷切皮斯卡 Politehnica大學</p><p> 出版日期: 2007年4月1日 出版信息: Po
2、stprints,加州大學戴維斯分校</p><p> 摘要:本文顯示驅(qū)動解決方案,速度的計算和引用所有自動速度控制范圍為24個裝配站屬于張力減為無縫鋼管廠。之間的速度控制和相關(guān)的拉伸,軋管控制也顯示。實驗結(jié)果是真實的數(shù)據(jù)聯(lián)想到最近的項目已在執(zhí)行中國的無縫鋼管廠。</p><p> 1簡介 作者在展位分配和使用差動齒輪箱的共同驅(qū)動概念代表了該工廠的表現(xiàn)靈活性的限制,但我們可
3、以合理地使用它減少驅(qū)動器的成本[1],[2]。因此,當我們正在設(shè)計的這種軋機型,我們要仔細研究的必要性和個人選擇的驅(qū)動器實用每個站或共同驅(qū)動器[3]。如果我們使用的是常見的減速驅(qū)動使用的主要驅(qū)動旋轉(zhuǎn)和重疊速度比率正在發(fā)生變化,同時在由旋轉(zhuǎn)速度控制所有攤位都(或一兩)馬達和維持的比例為代表,作為滾動旋轉(zhuǎn)速度成立由齒輪設(shè)計。因此,在此驅(qū)動器系統(tǒng),我們可以改變只速度平均或平均伸展,但不是在變形值的分布個人的立場[4] [5]序列。如果我們可以
4、放棄對管道的變形和個人速度控制的優(yōu)點如果我們除了一大之間的軋輥和材料(1現(xiàn)狀在容易滑倒?jié)L動計劃),我們可以接受一個共同的分布和差分驅(qū)動齒輪[6] ,[7].</p><p><b> 2機電驅(qū)動解決方案</b></p><p><b> 2.1。速度控制</b></p><p> 4電機驅(qū)動器由兩個驅(qū)動集團是由一個機
5、械分離另外,因此,即使允許序列有效的作物接近年底控制(CEC)管。為此,該條目軋機機架齒輪組功能異常的比例高獲得特別大的伸長率(圖1)。為立場位置(我的輥速度)的計算公式為,在進入邊驅(qū)動器組:</p><p> 圖1:原理與普通車道與分布的固體火箭發(fā)動機和齒輪差動</p><p> 關(guān)于對運行在驅(qū)動器出組方:</p><p> 速度曲線的基礎(chǔ)的特點是在入門組高
6、齒輪傳動比,使差動齒輪也積極在這一領(lǐng)域的行動,即對兩個基本相同的方向旋轉(zhuǎn)和差分驅(qū)動器。</p><p> 在軋制過程中的穩(wěn)態(tài)階段,在這個系統(tǒng)運行的基本驅(qū)動器而相同的速度差驅(qū)動裝置操作完全同步的速度。該速度是有關(guān)下列條件:</p><p> 據(jù)此IKM和IKD是常數(shù)。自動同步電動機的基本自動化系統(tǒng)。</p><p> 圖2:串聯(lián)驅(qū)動器的速度差異圖</p&g
7、t;<p><b> 2.2斯特雷奇控制</b></p><p> 在伸長率變化的電機速度的計算值與轉(zhuǎn)速結(jié)果從計算速度的變化。這種方法可確保運營商可以用一個影響速度的變化意味著在伸長率的變化,如果有必要,如果電機轉(zhuǎn)速在達到極限速度,沒有改變。一個輸入值用于改變伸長率。</p><p> 輸入范圍: -100 ... +100%</p>
8、;<p> 標準: 0 %(在滾動計劃)</p><p> 計算方法:輸入的值P轉(zhuǎn)換:</p><p> 與P波內(nèi)部限制值,例如20%的實際項目。</p><p> 下面的計算結(jié)果在“旋轉(zhuǎn)式”的速度與支點圖IPSPP(圖2)。一個站的位置被定義為支點:IPSPP =同側(cè)。</p><p> 這樣做的效果是進
9、入速度,從而使更多的物質(zhì)吞吐量保持或頗為穩(wěn)定。</p><p> 每個變速箱被分配到一個電機。這是一個特征值共同確定與滾動計劃,確定了齒輪階段(0或1)。相應(yīng)的齒輪比率表1所示。</p><p> 新發(fā)動機的進一步計算速度:IGRMD 1 = 1或齒輪的切換步驟比選擇。同樣是適用的IGRMD2,IGRDD1和IGRDD2。計算原因我們定義的變量X = IKM和..為Y = IKD<
10、;/p><p><b> 表1</b></p><p> 如果只對進口方的立場是占領(lǐng)輥組的立場和驅(qū)動器上運行一邊是不出來用于驅(qū)動指導(dǎo)站等適用以下規(guī)則:</p><p> 最后計算的新的發(fā)動機轉(zhuǎn)速:</p><p> 經(jīng)過每一個電機的速度計算,限值檢查和更正。在進口和出口速度的變化可以計算的基本公式:</p>
11、;<p><b> 為了:</b></p><p> IS - 進口或出口后伸長[米/秒]變化的速度;</p><p> G- 入口或出口速度[(m / s的梯度關(guān)系)/%](在滾動計劃);</p><p> AJ- 調(diào)整輸入值P [%];</p><p> IOS- 進口或出口速度的馬達默認設(shè)置
12、[米/秒]。</p><p> 如果只對進口方的立場是占領(lǐng)輥組的立場和在跳動的驅(qū)動器一邊是不被用來驅(qū)動指導(dǎo)站,以下適用于:OSDD2 = 0,OSMD2 = 0。</p><p><b> 圖3:速度圖范圍</b></p><p><b> 3.實驗結(jié)果</b></p><p><b&g
13、t; 表2</b></p><p><b> 馬達</b></p><p><b> 速度:</b></p><p><b> 圖4:實驗速度圖</b></p><p><b> 程序變量</b></p><p&g
14、t; IKM, IKD軋機常數(shù)。值都在制定滾動計劃。ISMD1 速度在進氣側(cè)驅(qū)動電機組基本的變量ISDD1 速度在進氣側(cè)差動驅(qū)動器驅(qū)動電機組的變量ISMD2 速度對出口方的基本驅(qū)動電機組的變量ISDD2 速度的出口端驅(qū)動器驅(qū)動電機組差的變量IPSPP 林分的支點位置號碼IGRSMD 站在初始位置號碼傳遞的位置IGRSDD 展臺的位置號碼的最后位置IGRMD1 齒輪電機1的
15、比例基本的變量IGRMD2 齒輪電機2比基本的變量IGRDD1 齒輪比率差動驅(qū)動電機1的變量IGRDD2 齒輪比率差動驅(qū)動電機2的變量OSMD1 速度在進氣側(cè)驅(qū)動電機組基本的變量OSDD1 速度在進氣側(cè)差動驅(qū)動器驅(qū)動電機組的變量OSMD2 速度對出口方的基本驅(qū)動電機組的變量OSDD2 速度的出口端驅(qū)動器驅(qū)動電機組差的變量</p><p> ALGORYTHMS
16、FOR SPEED AND STRECH CONTROL</p><p> OF THE MAIN DRIVES OF AN STRECH-REDUCING </p><p><b> TUBE MILL</b></p><p> Dorian MACREA </p><p> SC IPROLAM SA, Ne
17、gustori 23, Bucharest, Romania: dorian.macrea@iprolam.ro </p><p> Costin CEPISCA </p><p> Politehnica University, Spl.Indep.313, Bucharest, Romania </p><p> Abstract. This paper
18、shows the drive solution, the speed references calculation and the automatic control of all speeds range for the assembly of the 24 stands belonging to a tretch-reducing mill for seamless pipes. The correlation between t
19、he speed control and the stretching control of the rolled pipe is also shown. The experimental results are real data associated to the most recent project that has been executed at a seamless pipe plant in China.</p&g
20、t;<p> 1 Introduction </p><p> The concept of common drives of the stands using distribution and differential gear-boxes represents a flexibility limitation of the performances of the mill but using
21、 it we can sensibly reduce the costs of the drives [1], [2]. Therefore, when we are designing rolling mills of this type, we have to study carefully the necessity and the utility of choosing individual drives for each st
22、and or common drives [3]. </p><p> If we are using a common reducer driven using main and overlapping drives the rotating speed ratios are changing simultaneously at all stands by control of the rotating sp
23、eed at both (or one of the two) motors and maintaining the ratios for the rotating speeds of the rolling stands as been established by designing of the gears. Thus, in this drive system we can change only the speed avera
24、ge or the stretching average, but not the distribution of the deformation values in the individual sequence o</p><p> If we may give up the advantages of the individual speed control on the pipe deformation
25、 and if we except a larger slipping between the rolls and the rolled material (a current status at easier rolling programs) we could accept a common drive with distribution and differential gears [6], [7].</p><
26、;p> 2 Electromechanical drive solution </p><p> 2.1. Speed control </p><p> The 4-motor drive consists of two drive groups which are mechanically separated from one another and, therefor
27、e, allow effective crop end control (CEC) even with close sequences of tubes. For this purpose, the entry mill stand group features exceptionally high gear ratios to obtain particularly large elongations (Figure 1). The
28、 roll speeds for stand position (i) are calculated as, </p><p> In the entry side drive group:</p><p> Figure 1: Schematic for SRM with Common Drive with Distribution and Differential Gears &
29、lt;/p><p> With respect to the drive group on the run-out side: </p><p> The basis speed curve is characterized by high gear ratios in the entry drive group to enable positive differential gear a
30、ction also in this area, i.e. identical direction of rotation of both basic and differential drives. </p><p> During the steady-state phase of the rolling process, the basic drives of this system run at ide
31、ntical speeds while the differential drive units operate at exactly synchronized speeds. The speeds are related by the following term: </p><p> whereby IKM and IKD are constants. The motors are synchronize
32、d automatically in the basic automation system. </p><p> 2.2 Strech control </p><p> The motor speeds at changes in elongation are calculated with the rotational speed values resulting from
33、the calculation of the changes in speed. This method ensures that the operator can effect a change in elongation by means of a change in speed, if necessary, if motor speed limits are reached with no change in speed. One
34、 input value is used for the change in elongation. </p><p> Input range: -100 ... +100% </p><p> Standard: 0 % (in rolling program) </p><p> Calculation: Conversion of the
35、 entered value P: </p><p> PS 1 P/100*P /100 (5) </p><p> with Pmax as internal limiting value, e.g. 20% in the actual project. </p><p> The following calcul
36、ation results in a “pivoting” of the speed diagram with the pivot point IPSPP (Figure 2). One stand position is defined as the pivot point: IPSPP= IPSI. </p><p> This has the effect that the entry speed an
37、d thus the throughput of material remain more or ess constant. </p><p> Each gearbox is assigned to one motor. A characteristic value which is determined together with the rolling program, determines the ge
38、ar stage (0 or 1). The corresponding gear ratios are indicated in the Table 1.</p><p> Further calculation of new motor speeds: IGRMD 1= 1 or gear ratio of the switching step chosen. The same is to be appli
39、ed for IGRMD2, IGRDD1 and IGRDD2. For calculation reasons we define the variables X= IKM and Y = IKD.</p><p><b> Table 1</b></p><p> If only the stand group on the inlet side is oc
40、cupied by roll stands and the drives on the run out side are not used to drive guide stands etc. the following applies:</p><p> Final calculation of new motor speed:</p><p> After every calcul
41、ation of a motor speed, limit values are checked and corrected accordingly. The change in inlet and outlet speed can be calculated with the basic equation:</p><p><b> with: </b></p><p
42、> IS - Inlet or outlet speed after change in elongation [m/s]; </p><p> G - Gradient relationship of inlet or outlet speed [(m/s)/%] (in Rolling program); </p><p> AJ - Adjuste
43、d input value P [%]; </p><p> IOS - Inlet or outlet speed at default settings of the motors [m/s]. </p><p> If only the stand group on the inlet side is occupied by roll stands and the drives
44、 on the run-out side are not used to drive guide stands, the following applies: OSDD2 = 0, OSMD2 = 0.</p><p> Figure 3: Speed diagram ranges.</p><p> 3 Experimental results </p><p&g
45、t;<b> Table 2 </b></p><p><b> Motor </b></p><p><b> speeds:</b></p><p> Figure 4: Experimental speed diagram</p><p> Referen
46、ces </p><p> PROGRAM VARIABLES </p><p> IKM, IKD Rolling mill constants. The values are determined when drawing up the rolling program. </p><p> ISMD1 Speed of the
47、basic motor of the inlet side drive group </p><p> ISDD1 Speed of the differential drive motor of the inlet side drive group </p><p> ISMD2 Speed of the basic motor of the outlet s
48、ide drive group </p><p> ISDD2 Speed of the differential drive motor of the outlet side drive group </p><p> IPSPP Stand position number of the pivot point IPSI Stand position numb
49、er of the initial pass stand IPSF Stand position number of the final stand </p><p> IGRSMD(i) Gear ratio at stand position “i” of the basic drive </p><p> IGRSDD(i) Gear ratio at stand pos
50、ition “i” of the differential drive ICF Correction factor with unequal speed ranges of the basic motors </p><p> IGRMD1 Gear ratio of basic motor 1 </p><p> IGRMD2 Gear ratio of basi
51、c motor 2 </p><p> IGRDD1 Gear ratio of differential drive motor 1 </p><p> IGRDD2 Gear ratio of differential drive motor 2 </p><p> OSMD1 Speed of the basic moto
52、r of the inlet side drive group </p><p> OSDD1 Speed of the differential drive motor of the inlet side drive group </p><p> OSMD2 Speed of the basic motor of the outlet side drive
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---algorythms控制速度和斯特雷奇 中文
- 外文翻譯---algorythms控制速度和斯特雷奇 英文
- 斯特奇
- 內(nèi)部控制和薩班斯法案(2002)【外文翻譯】
- 速度控制系統(tǒng)設(shè)計外文翻譯
- 產(chǎn)業(yè)集群的營銷外部性從克賴斯特徹奇、新西蘭電子集群的文獻回顧和證據(jù)【外文翻譯】
- 外文翻譯--設(shè)計與塑造轉(zhuǎn)矩和速度控制變速器 tsct
- 外文翻譯---直流電機速度控制
- 外文翻譯--坐標系變換和速度分解控制方法 英文版
- 外文翻譯--坐標系變換和速度分解控制方法 中文版
- 外文翻譯--六-輪式車輛期望橫擺角速度和側(cè)偏轉(zhuǎn)向控制方法
- 外文翻譯--六-輪式車輛期望橫擺角速度和側(cè)偏轉(zhuǎn)向控制方法
- 外文翻譯---贏得推特營銷的手段和策略
- 外文翻譯--加工參數(shù)曲線的速度控制插補器
- 外文翻譯--六-輪式車輛期望橫擺角速度和側(cè)偏轉(zhuǎn)向控制方法(原文)
- 外文翻譯--六-輪式車輛期望橫擺角速度和側(cè)偏轉(zhuǎn)向控制方法(譯文)
- 解析阿特伍德的小說別名格雷斯中的瘋癲
- 傳統(tǒng)與超越解讀阿特伍德的小說別名格雷斯
- 雷拉斯介紹
- 外文翻譯--加工參數(shù)曲線的速度控制插補器.doc
評論
0/150
提交評論