版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> Agricultural Robotic Platform with Four Wheels Steering for Weed Detection</p><p> Thomas Bak; Hans Jakobsen</p><p> Department of Agricultural Engineering, Danish Institute of Agri
2、cultural Sciences, Schoottesvej. 17, DK-8700 Horsens, Denmark;e-mail of corresponding author: tb@control.auc.dk</p><p> (Received 10 January 2003; accepted in revised form 14 October 2003; Published online
3、23 December 2003)</p><p> A robotic platform for mapping of weed populations in fields was used to demonstrate intelligent concepts for autonomous vehicles in agriculture which may eventually result in a ne
4、w sustainable model for developed agriculture. The software implements a hybrid deliberate software architecture that allows a hierarchical decomposition of the operation. The lowest level implements a reactive feedback
5、control mechanism based on an extension of simple control for car-like vehicles to the four wheel ca</p><p> 1. Introduction</p><p> Advances in mechanical design capabilities, sensing technol
6、ogies, electronics, and algorithms for planning and control have led to a possibility of realizing field operations based on autonomous robotic platforms The need for such systems is driven by increasing financial pressu
7、re on farmers combined with public concern about the environment and working conditions. Efficient deployment of autonomous robotic platforms in the field will allow care and management of crops in a very different way f
8、r</p><p> This paper presents an overview of the system and approach. Section 2 provides a system description. This includes a description of modular mechanical concepts well as the Techtronic implementatio
9、n of the system. Everything is tied together in hierarchical hybrid software architecture. In Section 3, the focus is on a specific mobility control strategy that extends simple controllers to 4WS. The result is a system
10、 that allows the vehicle to track a given path, while maintaining the front and rear</p><p> 2. System description</p><p> The robotic platform described here is meant to demonstrate novel sen
11、sing capabilities (Sgaard &Olsen, 2000) and semi-autonomous operation of a robotic platform for agriculture. The immediate agronomic aim of the project is to demonstrate efficient measurement of spatial and temporal
12、crop and weed measurements. Given that the variability in weeds is measured and mapped, inputs can be varied according to a defined strategy providing environmental and economic benefits. Studies show that 50–80% of</
13、p><p> 2.1. Robotic platform</p><p> The basis for the robotic platform is the mobility capability provided by the wheel module mechanism shown in Fig. 1. Each of the four identical wheel modules
14、 include a brushless electric motor for propulsion that provide direct drive without gearing. Motor, amplifier and microcontroller are all mounted in the wheel hub. Steering capability is achieved by a separate steering
15、motor mounted on top of the wheel module shaft to create a two-degree-of-freedom mechanism. The steering motor amplifier a</p><p> 2.2. Platform electronics</p><p> This allows programs to be
16、built automatically and subsequently execute in near real-time on the platform computer. The solution supports transmission control protocol/internet protocol (TCP/IP) sockets for remote communication with the running co
17、de which allow monitoring and modification of parameters during development.</p><p> 2.3. System architecture</p><p> The system architecture adopted is similar to the hybrid deliberate approa
18、ch (Arkin, 1990) that is now common in mobile robotics systems (Orebaack. & Christensen 2003). The three-layer architecture consists of: (1) a reactive feedback control mechanism that handles stabilization and tracki
19、ng, (2) a plan-execution mechanism that deals with e.g. trajectory generation and task decomposition, and (3) a mechanism for performing time-consuming deliberative computations and interaction with human opera</p>
20、<p> 3 Mobility control</p><p> The motion of the robot can always be viewed as an instantaneous rotation around a time varying point called the instantaneous centre of rotation (ICR). Hence, at eac
21、h instant, the velocity vector of any point. Of the frame is orthogonal to the straight line joining this point and the ICR. </p><p> Controlling the vehicle position in the field implies controlling the tw
22、o-dimensional location of the ICR, which may be achieved by specifying the direction of travel of two points of the vehicle. To get experimental results with the 4WS system, a simple controller that controls two steering
23、 points was implemented, one at the front end and one at the rear of the vehicle. The 4WS is then utilized to minimize the distance to the desired path for both steering points independently as indicated in </p>
24、<p> This approach with two independent controllers allows us to switch between 2WS and 4WS without having to change the controller structure. As front and rear controllers are identical so without loss of generali
25、ty, the description here is focused on the front steering controller. Its control objective is to minimize the perpendicular distance to the path df. The sign of df indicates the side of the path on which the steering po
26、int is located. From df it calculates a commanded direction of the fron</p><p> where: h is a positive scalar converting the control signal to motor voltage.</p><p> This simple distribution a
27、ctually works very well in practice and in addition it also has an anti-spin effect. If a wheel slips, it will of course rotate a little faster as the EMF will grow to compensate for the missing torque, but the torque di
28、stribution among the wheels is not changed. A slipping wheel has a minor influence on the measured vehicle speed as it is based on the rotation speed of all wheels, but this can be solved by omitting a wheel if a slip de
29、tection indicates that it is slipp</p><p> 作者:Thomas Bak; Hans Jakobsen</p><p><b> 國籍:Danish</b></p><p> 出處:Department of Agricultural Engineering, Danish Institute o
30、f Agricultural Sciences, Schoottesvej. 17, DK-8700 Horsens, Denmark;</p><p> 除草的四輪農(nóng)業(yè)機器車</p><p> 機器人平臺測繪雜草種群的領(lǐng)域是用來展示智能概念車輛,這最終將為高度發(fā)達(dá)的農(nóng)業(yè)引進(jìn)一種可持續(xù)的模式,現(xiàn)有的車輛適用于0.25米和0.5米行距的作物,這種車輛裝備了適用于行間向?qū)Ш退褜るs草的相機。
31、攜帶有四個特備的輪子的組合方法,允許轉(zhuǎn)向裝置和推進(jìn)力。這種結(jié)果被改進(jìn)了,允許機器在轉(zhuǎn)向時平行移動,是通過去耦合裝置來調(diào)節(jié)方向的。機器的控制是通過工具系統(tǒng)和基于控制的系統(tǒng),這種軟件工具混合了成熟的建構(gòu)軟件,這種農(nóng)業(yè)軟件混合有機的操作。最低水準(zhǔn)是運用反饋系統(tǒng),這種反饋系統(tǒng)基于汽車簡單控制的延伸,這種控制設(shè)計使得前后輪服從以設(shè)計的路徑,允許機器維持復(fù)雜的相關(guān)路徑,這種控制方法正在試驗中。</p><p><b&g
32、t; 引言</b></p><p> 在控制方面的機械設(shè)計能力,傳感技術(shù),電子學(xué)和運算學(xué)的進(jìn)步已經(jīng)使得自動化的機器人操作的可能性。這種系統(tǒng)的需要正被逐漸增加的財政壓力,公眾對環(huán)境和工作條件的關(guān)注而驅(qū)動著。機器平臺和工具或許能精確的感覺到和控制到農(nóng)作物和他所處的環(huán)境從而使其比傳統(tǒng)的機器更有效。這能夠在提高精度和效率的同時降低對環(huán)境的反作用,這種結(jié)果對于高度發(fā)達(dá)的農(nóng)業(yè)是一種新的可持續(xù)模式,農(nóng)業(yè)機器向?qū)?/p>
33、已經(jīng)成為一種積極地研究領(lǐng)域好多年了,最初的商業(yè)導(dǎo)向系統(tǒng)已經(jīng)普及,拖拉機被提前預(yù)設(shè)的路徑控制,這種路徑是基于GPS系統(tǒng)。這些自動向?qū)C器解決了以上許多問題,但是在土壤,壓實,能源使用、排放物和精密等方面不是最好的解決方案。</p><p> 把重心集中到能不斷操作和最小誤差的機器,能讓我們想到一系列的更小更特殊更精確更有效的機器。這種機器能夠以更低的頻率來工作更長的時間,同時比以往機器提供同樣甚至是更多的輸出。機
34、器在無人的情況下更長時間的操作時一項重大挑戰(zhàn)。最近在機械手工程的區(qū)域農(nóng)業(yè)者有很大的貢獻(xiàn)。</p><p> 給在田里的雜草數(shù)量進(jìn)行草繪的機器人平臺在農(nóng)業(yè)里被用來示范自動車輛的智能觀念,這最終將為高度發(fā)達(dá)的農(nóng)業(yè)引進(jìn)一種可持續(xù)的模式,現(xiàn)有的車輛適用于0.25米和0.5米行距的作物,指導(dǎo)與農(nóng)作物相關(guān)的車輛線使用指導(dǎo)照相機提高工作率,減到最少的同時提供有價值的局限輸入對農(nóng)作物的傷害。四輪轉(zhuǎn)向(4WS)的引進(jìn)為這次研究提
35、供了一種更靈活的平臺,但改善的變動性也提供了一個數(shù)量更多的實際利益。四輪轉(zhuǎn)向系統(tǒng)允許車輛在轉(zhuǎn)向中平行的位移,從而調(diào)整位移取向。</p><p> 鑒于有車輛的四個非線性性質(zhì)的獨立控制車輪的控制問題不是小事情,然而,那樣的控制系統(tǒng)在一種低速的情況下也能給出很好的結(jié)果。一種已經(jīng)成功被使用的方法就是在車輛的前頭安上比例控制器,這些結(jié)果解決了傳統(tǒng)的轎車般的車輛在兩個轉(zhuǎn)向車輪的問題,當(dāng)時四輪轉(zhuǎn)向的模糊控制被討論中。這里采
36、用的方法建立在兩輪轉(zhuǎn)向成功的試驗的基礎(chǔ)上的,同時引進(jìn)了一種簡單的4WS案例。</p><p><b> 2. 系統(tǒng)描述</b></p><p> 這里描述的機器人平臺。旨在展示新型傳感功能和一種農(nóng)業(yè)機器人半自動化操作。農(nóng)業(yè)經(jīng)濟項目的目的是控制有效的測量時間和控制的作物和雜草測量,考慮到雜草的測量方法和映射,輸入的不同,參照一個提供環(huán)境和經(jīng)濟效益的明確方法。研究表明
37、50%-80%的除草劑費用可以節(jié)省。</p><p><b> 2.1 機器人平臺</b></p><p> 機器人平臺的基礎(chǔ)是車輪模塊提供的流動性能力如圖1,每個特定功能的車輪模塊包括無刷電機提供無齒輪直接驅(qū)動推進(jìn),電機,放大器和微控制器都安裝在輪轂上。</p><p> 通過在車輪模塊安裝具有獨立轉(zhuǎn)向電機軸輪模塊來創(chuàng)建兩個自由度的機制
38、。轉(zhuǎn)向電機放大器和控制電子器安裝在方向盤馬達(dá)上,控制電子系統(tǒng)是基于商業(yè)農(nóng)業(yè)工作電腦和處理具體情況的控制系統(tǒng)。</p><p> 車輪模塊有一個簡單的機械接口允許它可以安裝在幾乎任何車輛上,電器接口包括一個電源接口和一個控制器區(qū)域網(wǎng)絡(luò)(CAN)的總線接口控制模板如圖二。</p><p> 該平臺是專門為農(nóng)業(yè)0.5米間隙作物的使用,具有良好的離地間隙,較小的車輪和0.25米行的駕駛區(qū)間。實
39、現(xiàn)由被動穩(wěn)定三點懸掛系統(tǒng),確保所有車輪與地面接觸。該平臺為車輛提供細(xì)密的前面車廂電子系統(tǒng),車廂后部的電池和可能的用戶界面。</p><p> 2.2 平臺電子系統(tǒng)</p><p> 通過提供控制平臺機電一體化系統(tǒng),包括剛才所描述的機械概念和汽車電子控制系統(tǒng)來正確驅(qū)動機械子系統(tǒng)。電子架構(gòu)是圍繞平臺計算機(pc/104系統(tǒng)),如圖3所示。</p><p> 該平臺
40、計算機軟件實現(xiàn)Linux操作系統(tǒng),該發(fā)展是由MathWorks公司的支持實行車間。允許帶定制C代碼直接來源于仿真模型,這使得程序?qū)⒆詣咏⒑碗S后在近實時的平臺上執(zhí)行。</p><p> 本地化是實現(xiàn)冗余的傳感器集是連接到計算機使用平臺RS232系列動力通信??協(xié)議以及一個CAN2.0b 協(xié)議。主導(dǎo)航傳感器是舊拓普康雙頻載波相位差GPS接收能夠優(yōu)于2厘米的標(biāo)準(zhǔn)偏差的絕對精度,一個KVH的E-CORE2000光纖陀
41、螺儀精確測量的標(biāo)題率,包括測量控制陀螺漂移從磁輪和轉(zhuǎn)向編碼器。相結(jié)合,與絕對位置編碼器,磁強計和陀螺儀的可靠性,標(biāo)題絕對的唯一參考磁鐵爍效應(yīng),但該計劃包括該行的指導(dǎo)在融合過程中,以抵消這些問題的相機磁測量的靈敏度。</p><p><b> 2.3 系統(tǒng)構(gòu)架</b></p><p> 系統(tǒng)架構(gòu)采用的是類似混合蓄意的做法(阿金,1990年),現(xiàn)在是常見的移動機器人系
42、統(tǒng)。三層建筑是由以下部分組成:(1)無反饋控制機制處理穩(wěn)定和跟蹤,(2)計劃執(zhí)行如軌跡生成和處理機制任務(wù)分解和(3)執(zhí)行費時審議計算和機制與人類的運營商的互動,即創(chuàng)造就業(yè)機會。層次結(jié)構(gòu)如圖4.</p><p> 作者:湯姆斯 貝克;漢克斯 杰克森 </p><p><b> 國籍:丹麥</b></p><p> 出處:農(nóng)業(yè)工程學(xué)部,農(nóng)業(yè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 輪履復(fù)合式農(nóng)業(yè)機器人運動規(guī)劃及控制研究.pdf
- 基于機器視覺的農(nóng)業(yè)機器人自主作業(yè)研究.pdf
- 農(nóng)業(yè)機器系統(tǒng)優(yōu)化研究本科學(xué)士
- 多功能自主農(nóng)業(yè)機器人研制.pdf
- 基于CAN總線的農(nóng)業(yè)機器人導(dǎo)航研究.pdf
- 大慶農(nóng)場農(nóng)業(yè)機器系統(tǒng)優(yōu)化設(shè)計研究.pdf
- 農(nóng)業(yè)機器人視覺定位導(dǎo)航技術(shù)的研究.pdf
- 基于機器視覺的農(nóng)業(yè)機器人自定位技術(shù)研究.pdf
- 溫室農(nóng)業(yè)機器人的移動平臺設(shè)計與仿真.pdf
- 外文翻譯--四輪定位簡介
- 外文翻譯--四輪定位簡介
- 農(nóng)業(yè)機器人視覺導(dǎo)航系統(tǒng)研究.pdf
- 《農(nóng)業(yè)機器運用管理學(xué)》多媒體課件的研制與開發(fā).pdf
- 基于條件隨機場的農(nóng)業(yè)機器人導(dǎo)航場景識別研究.pdf
- 農(nóng)業(yè)機器人導(dǎo)航線提取算法的研究與實現(xiàn).pdf
- 農(nóng)業(yè)機器人路徑規(guī)劃與跟蹤方法研究.pdf
- 自主農(nóng)業(yè)機器人的神經(jīng)-模糊建模與故障檢測.pdf
- 基于Web的農(nóng)業(yè)機器選型智能決策支持系統(tǒng)的研究.pdf
- 基于DSP的農(nóng)業(yè)機器人關(guān)節(jié)控制器的研究.pdf
- 兵團(tuán)國營農(nóng)場農(nóng)業(yè)機器系統(tǒng)優(yōu)化配置研究.pdf
評論
0/150
提交評論