版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 帶有垂直傳染和接種疫苗SEIRS流行病模型的全局穩(wěn)定性</p><p> Global Stability of an SEIRS Epidemic Model with Vertical Transmission and Vaccination</p><p> 作者: 茍清明 劉春花</p><p> 起止頁碼:56--61<
2、/p><p> 出版日期(期刊號):2010年11月(1673-9868)</p><p> 出版單位:西南大學學報( 自然科學版) </p><p><b> 外文翻譯譯文:</b></p><p> 摘要: 本文建立一個考慮了疾病的水平傳播和垂直傳播以及接種疫苗等因素的傳染病模型,通過排除周期解、同宿軌和異宿環(huán)的
3、存在來研究模型的全局穩(wěn)定性, 最后證明系統(tǒng)的全局動力學特性完全由基本再生數(shù)所確定:當時,無病平衡點是全局漸近穩(wěn)定的;當時,地方病平衡點是全局漸進穩(wěn)定的.</p><p> 關鍵詞:傳染病模型;垂直傳播;疫苗;全局穩(wěn)定性</p><p> 中圖分類號:O17513 文獻標識碼:A</p><p> 在許多傳染病模型中,總是假設人口傳染病是通過直
4、接接觸感染源或通過諸如蚊子等媒介叮咬,或通過水平傳播.但是許多傳染病不僅有水平傳播還有垂直傳.垂直傳播也可通過媒介的胎盤轉移完成,如乙肝,風疹,皰疹的病原體.對昆蟲或植物而言,往往是通過垂直傳播如卵或種子.Busenberg等人討論了疾病的水平傳播和垂直傳播問題.在本文中,我們假設疾病既有水平傳播又有垂直傳播.我們假定人口具有指數(shù)出生,人口被均勻分為四個倉室:易感染者(S),潛伏者(E),染病者(I)和恢復者(R). 因此總人口為.&l
5、t;/p><p> 我們認為這種疾病不是致命的,人均自然出生率和死亡率分別記為參數(shù)b和d.我們假設,潛伏者的新生兒進入易感者類,而染病者的新生兒有q比例是感染者.因此進入潛伏者類的新生兒為bqI,.對于染病者類,我們假設δ比例的染病者具有永久免疫力,進入R類,r比例的染病者沒有免疫力,進入S類,模型假設易感者類的接種比例為θ. 根據(jù)上述假設,得到如下微分方程</p><p><b>
6、; (1)</b></p><p> 這里β是常規(guī)接觸率,參數(shù)μ是從E類到I類的轉換率.參數(shù)b,d,β,μ為是正數(shù),θ,σ,r為非負數(shù).</p><p> 設x=S/N; y=E/N; z=I/N和ω=R/N分別表示S,E,I,R在總人口中的比例.易證x,y,z,ω滿足下列微分方程:</p><p> (2)
7、 </p><p> 受的限制,由于變量不出現(xiàn)在方程組(2)的前三式中,這使我們減少方程(2)得到一個子式.</p><p><b> (3)</b></p><p> 在可行的區(qū)域內,我們從生物角度研究(3)式</p><p><b> (4)</b>&l
8、t;/p><p> 在V中(3)式的動態(tài)學行為和疾病傳播是由如下基本再生數(shù)決定的</p><p><b> (5)</b></p><p> 本文的目的是要證明(3)的動力學行為由決定.</p><p><b> 1 數(shù)學框架</b></p><p> 我們簡要概述一個
9、一般的數(shù)學框架,證明了一個常微分方程系統(tǒng)的全局穩(wěn)定性,這是在文獻[3]中提到的.</p><p> 令是一個函數(shù),x屬于開集.讓我們考慮如下微分</p><p><b> (6)</b></p><p> 我們記是式(6)中使得的一個解.如果每個對于和充分大的t,則(6)式中集合K收斂于D.</p><p> 我
10、們提出兩個基本假設:</p><p> 存在一個緊的吸引集合K?D.</p><p> 在D中(6)具有唯一的平衡點.</p><p> 若是局部穩(wěn)定且在D中所有的軌跡收斂到,則唯一的平衡點是全局穩(wěn)定的.</p><p> 對于可行區(qū)域是有界圓錐體的傳染病模型,是等價于(6)的一致持久性.</p><p>
11、對于x∈D,設是一個矩陣值函數(shù)為的.假設當x∈K,K為緊集時,存在,且為連續(xù)的.一個數(shù)量定義為</p><p><b> (7)</b></p><p><b> (8)</b></p><p> 矩陣是通過P沿f方向的導數(shù)來代替P的每個元素得到的,、和是第二加性復合矩陣f的雅可比矩陣和及μ(B)是B的Lozinsk
12、ii測度,其向量范數(shù)為中的范數(shù).</p><p> 文獻[3]中定理3.5給出了如下全局穩(wěn)定性結果.</p><p> 定理1 設D是單連通的,而且假設,成立.如果<0的,則(6)的唯一的平衡點在D是全局穩(wěn)定的.</p><p> 文獻[3]證明了在定理1的條件下,條件<0排除了(6)中有不變閉曲線的可能性,如周期解,同宿軌和異宿軌,因而它蘊含了x
13、的局部穩(wěn)定性.</p><p> 使用定理1來分析(3)的全局穩(wěn)定性,設V,定義分別為(4),(5). 易證V是系統(tǒng)(3)的正不變集.</p><p> 2 模型(3)的定性分析</p><p> 易證,如果是模型(3)在V中的唯一平衡點;如果V的內部存在唯一的地方病平衡點.</p><p> 定理2 如果,系統(tǒng)(3)的無病平衡點在V
14、中是全局漸近穩(wěn)定;如果則它是不穩(wěn)定的,從足夠靠近0E出發(fā)的軌線遠離,從x?軸出發(fā)的軌線沿x?軸趨向于.</p><p><b> 證明 令</b></p><p><b> 則如果,,</b></p><p> 而且,如果;否則,如果,則在V中y=z=0.因此集合中的最大緊不變集是單點集.當時,的全局穩(wěn)定性由Lasa
15、lles不變集原理得到.</p><p> 如果,則除了y=z=0的情形,當x足夠接近時候,.因此,從足夠接近出發(fā)的軌線遠離,從X軸出發(fā)的軌線滿足系統(tǒng)(3)的方程,從而當t→∞,.</p><p> 當時,V中系統(tǒng)(3)的全局動力學完全由定理2決定.其流行病學含義是,受感染人口在總人口中的比例(即潛伏者和染病者比例之和)隨著時間而趨于零.</p><p> 引
16、理1 如果,此時系統(tǒng)(3)在v中是一致持久的,也即存在一個常數(shù)0<ε< 1使得從出發(fā)的任意解都滿足</p><p> 證明 我們運用參考文獻[4]中的定理4.5來證明此引理.為了證明當,系統(tǒng)(3)滿足定理4.5的所有條件,我們選擇V=X,,V.那么</p><p> 是X中的一個不變集,令,由定理2知,包含的同宿軌道不存在,而且M是一個弱排斥子.因此M是的非循環(huán)的,孤立的,
17、覆蓋.因此,文獻[4] 中定理4.5 的所有條件系統(tǒng)(3)都滿足,因此引理得證.</p><p> 為了證明地方病平衡點*E的全局漸近穩(wěn)定性,我們需要另一個引理.</p><p> 引理2 假設是(3)的解且.如果,則存在,當時,解滿足.</p><p> 證明 由(3)的第一個方程知</p><p> 如果bq≥r,顯然成立.如果b
18、q<r,令. 當時,易得,因此, ,從而當時,.因此,當t從分大時,有.從而引理結論得以證明.</p><p> 定理 3 假定,那么在V中,唯一的地方病平衡點是全局漸近穩(wěn)定的.</p><p> 證明 通過第一節(jié)的討論以及引理1,我們看到系統(tǒng)(3)滿足假設和.</p><p> 系統(tǒng)(3)的通解的雅可比矩陣J為:</p><p>
19、; 其第二復合加法矩陣為:</p><p><b> (9)</b></p><p> 關于復合矩陣及其性質的詳細討論,請讀者參考文獻[9].</p><p> 設(8)中的函數(shù)P(x)為,則</p><p><b> ,</b></p><p> (8)中的矩陣
20、,可以被寫成矩陣塊的形式</p><p><b> 當,</b></p><p><b> , ,</b></p><p><b> 在中,向量范數(shù)選作</b></p><p><b> .</b></p><p> 讓μ
21、(.)表示該對應范數(shù)的Lozinskii度量.利用文獻[11]中估計μ(.)的方法,得</p><p><b> (10)</b></p><p><b> 其中</b></p><p> 表示在中的范數(shù)對應的的Lozinskii度量.由于為標量,對于中的任意范數(shù)的Lozinskii度量都是等于.,是對應于范數(shù)的矩陣
22、范數(shù).因此,這里</p><p> 由引理2知,當時,有,.</p><p><b> 因此,當時,</b></p><p><b> (11)</b></p><p><b> (12)</b></p><p><b> 重寫(3)
23、,我們有</b></p><p><b> (13)</b></p><p><b> (14)</b></p><p> 將(13)代入到(11),(14)代入(12),我們可得,當時,</p><p> 由此得 根據(jù)(3)式的是緊促吸收集.對于,有</p>&l
24、t;p> 從(7)可知,這就完成了證明定理3.</p><p> 3 人口數(shù)量的動態(tài)學行為</p><p> 現(xiàn)在考慮和構成的動力學行為,它們有系統(tǒng)(1)來控制.由于(1)的前三個方程中沒有出現(xiàn)R (t),因此我們研究其等價系統(tǒng):</p><p><b> (15)</b></p><p> 顯然,人口總
25、量N(t)可能增加、減少或為常數(shù),其完全依賴于增長率r=b?d.</p><p> 比例(x ,y ,z)可能趨向于或地方病平衡點,但是感染者比例的變化并不能給提供我們關于染病者(包括E類和I類)行為變化的信息.特別地,即使被感染的個體的總數(shù)呈指數(shù)增加,但以比人口總量增長率低,那么這兩者所占的比重將趨向于零,然而,被感染個體的總數(shù)趨于無窮.我們也能夠想象出相反的情況——感染者的數(shù)量和人口總量的下降到零,但是二者
26、比例一直保持(非零)常量不變.在這種情況下,只要人口總量非零,就一定存在感染者.為了描述的變動情況,我們需要另外兩個閾值參數(shù)(文獻[12]中有介紹).以下是相關的閾值參數(shù):</p><p> 我們得到以下兩個定理.</p><p> 定理4 (a) 易感者的數(shù)量以指數(shù)漸近率b?d增加(減小).</p><p> (b) 假設,如果或,則.</p>
27、<p> 證明 (a)由定理2知,意味著?由(1)的第一個方程,我們有.由定理3知,當時,. 方程(1)的第一個方程除以S并取極限得:</p><p> 由(3)的第一個方程可知,平衡點滿足方程</p><p><b> 因此 </b></p><p> (b)通過E(t),I(t)的方程來研究其行為:</p&g
28、t;<p><b> (16)</b></p><p> 這是線性系統(tǒng)的一個擾動.(16)的線性主部的解正如定理中所描述的那樣,因為當t→∞時,擾動部分以指數(shù)衰減(見參考文獻[10],第3章定理2 3),則(16)的解與其線性系統(tǒng)的解行為相同.</p><p><b> 定理5 假定.</b></p><p
29、> 如果數(shù)量下降(增加).而且指數(shù)漸進增長(下降率)為</p><p><b> (17)</b></p><p> 如果數(shù)量下降(增加).而且指數(shù)漸近增長(下降率)為</p><p><b> (18)</b></p><p> 證明 由定理3知:如果,則且</p>
30、<p><b> (19)</b></p><p><b> 因此</b></p><p><b> (20)</b></p><p> 由(1)的第二個方程,方程(19)及方程(20),可得(17).由(1)的第三個方程及方程(20),也可得到(18).</p>&l
31、t;p> 致謝:審稿人提出了非常有價值的意見和建議, 對此我們表示感謝.</p><p><b> 參考文獻:</b></p><p> [1] 茍清明.一類具有階段結構和標準發(fā)生率的SIS 模型[J].西南大學學報:自然科學版,2007,29(9):6-13.</p><p> [2] 茍清明,王穩(wěn)地.一類有遷移的傳染病模型的穩(wěn)
32、定性[J].西南師范大學學報:自然科學版,2006,31(1):18-23.</p><p> [3] Li M Y, Muldowney J S. A Geometric Approach to Global Stability Problems [J]. SIAM J Math Anal, 1996,27(4):1070-1083.</p><p> [4] Thieme H R.
33、 Persistence Under Relaxed Point Dissipativity (with an Application to an Endemic Model)[J].SIAM J Math Anal,1993,24(2):407-435.</p><p> [5] Driessche P Van den,Watmough J. Reproduction Numbers and Sub Thre
34、shold Endemic Equilibria for Compartmental Models of Disease Transmission [J].J Math Biosci, 2002(180):29-48.</p><p> [6] Busenberg S, Cooke K. Vertical Transmission Diseaes,Models and Dynamics [M]. Berlin:
35、 Springer Verlag,1993.</p><p> [7] Li M Y, Smith H L, Wang L. Global Stability of an SEIR Model with Vertical Transmission [J]. SIAM J Appl Math, 2001,62(1):58-69.</p><p> [8] Li M Y, Wang L.
36、A Criterion for Stability of Matrices[J].J Math Anal Appl, 1998(225): 249-264.</p><p> [9] Muldowney J S. Compound Matrice and Ordinary Differential Equations[J].Rocky Moun J Math,1990,20(4): 857-872.</p
37、><p> [10]Hale J K. Ordinary Differential Equations[M].New York:Wiley-Interscience, 1969:296 -297.</p><p> [11] Martin R H J R. Logarithmic Norms and Projections Applied to Linear Differential Sy
38、stem [J]. J Math Anal Appl,1974(45):432-454.</p><p> [12] Thieme H R. Epidemic and Demographic Interaction in the Spread of Potentially FatalDiseases in a Growing Population. [J]. Math Biosci, 1992, 111(1):
39、 99-130.</p><p> 該英文原文由指導教師提供,選自:</p><p> Gou Q M, Liu C H. Global Stability of an SEIRS Epidemic Model with Vertical Transmis-sion and Vaccination [J]. J Southwest Univ, 2010, 32(11): 55-61.&
40、lt;/p><p><b> 原文:</b></p><p> Global Stability of an SEIRS Epidemic Model with Vertical Transmission and Vaccination</p><p> Abstract: In this paper, by ruling out the p
41、resence of periodic solutions, homoclinic orbits and heteroclinic cycles, we study the global stability of an SEIRS epidemic model which incorporates exponential growth, horizontal transmission, vertical transmission, st
42、andard incidence and vaccination. It is shown that the global dynamics are completely determined by the basic reproduction number . If , the disease free equilibrium is globally asymptotically stable; whereas if , the u
43、nique endemic eq</p><p> Key words: epidemic model; vertical transmission; vaccination; global stability</p><p> CLC number: O175 13 Document code: A</p><p> In many epidemic mod
44、els, one assumes that infectious diseases transmit in a population through direct contact with infectious host s, or through disease vectors such as mosquitos or other biting sects, Viz. horizontal transmission . But man
45、y infectious diseases spread through not only horizontal transmission but also vertical transmission. Vertical transmission can be accomplished through transplacental transfer of disease aents, such as Hepat it is B, rub
46、ella, herpes simplex . Among insect s or</p><p><b> (1)</b></p><p> Here, is the adequate contact rate, the parameterμis the transfer rate from the E class to I class. The paramete
47、rs b, d, β,μare positive, θ,σ,r, rare nonnegative.</p><p> Let x = S / N, y = E / N , z = I / N and w = R / N denote the fraction of the classes S , E , I , R in the population, respectively. It is easy to
48、verify that x, y, z, w satisfy the following differential equations:</p><p> (2) </p><p> subject to the restriction x + y + z + w = 1. Because the variable w do
49、es not appear in the first three equations of ( 2) . This allow s us to reduce ( 2) to a subsystem:</p><p> (3) </p><p> From biological considerations, we study ( 3) in
50、 the feasible closed region</p><p><b> (4)</b></p><p> The dynamical behavior of ( 3) in V and the fate of the disease is determined by the basic reproduction number</p><
51、;p><b> (5)</b></p><p> The objective of this paper is to show that the dynamical behavior of ( 3) is characterized by .</p><p> Mathematical Framework</p><p> We
52、 briefly outline a general mathematical framework to prove the global stability o f</p><p> a system of ordinary differential equations, which is proposed in reference [ 3] .</p><p> Let be a
53、 function for x in an open set . Let us consider</p><p> the system of differential equations</p><p><b> ( 6)</b></p><p> We denote by the solution to ( 6) such tha
54、t . A set K is said to be</p><p> absorbing in D for (6), if x ( t , K 1 ) K for each compact K 1 D and sufficiently large t. We make two basic assumptions:</p><p> ( H1 ) There exists a compa
55、ct absorbing set K?D.</p><p> ( H2 ) ( 6) has a unique equilibrium in D.</p><p> The unique equilibrium x is said to be globally stable in D if it is locally stable and all trajectories in D
56、converge to x. For epidemic models w here the feasible region is abounded cone, ( H 1 ) is equivalent to the uniform persistence of ( 6).</p><p> Let be an matrix-valued function that is For x∈D Assume that
57、 exists and is continuous for x|∈K, the compact set. A quantity is defined as</p><p><b> (7)</b></p><p><b> (8)</b></p><p> The matrix Pf is obtained by
58、 replacing each entry pij of P by its derivative in the direct ion of f, ( pij ) f , andis the second additive compound matrix of the Jacobian matrixof</p><p> f , and μ(B)is the Lozinski measure of B with
59、respect to a vector norm in .</p><p> The following global stability result is proved in Theorem 3.5 of reference [ 3] .</p><p> Theorem 1 Assume that D is simply connected and that assum
60、ptions (H 1 ) , (H 2 ) hold. Then the unique equilibrium of ( 6) is globally stable in D if < 0.</p><p> It is show in reference [3] that under the assumptions of Theorem 1, the condition < 0 rules
61、out the presence of any orbit that g iv e rise to a simple closed rectifiable curve that is invariant for ( 6) , such as periodic orbit s, homoclinic or bits and heteroclinic cycles, and it implies the local stability of
62、 .</p><p> We now use Theorem 1 to analyze the global stability of ( 3) . Let V , R0 be defined as in ( 4) and ( 5) ,respectively. It is easy to verify that the set V is positively invariant for (3) .</
63、p><p> Qualitative Analysis of Model ( 3)</p><p> It is easy to prove that , ifis the only equilibrium of the model ( 3) in V;if R0 > 1, a unique endemic equilibrium ?V( the interior of V ) ex
64、ists.</p><p> Theorem 2 The disease-free equilibrium of ( 3) is globally asymptotically stable in V if ; it is unstable if and the trajectories star ting sufficiently close to E0 leave E0 except those sta
65、rting on the x axis which approach E0 along this axis. </p><p> Proof Set </p><p><b> Then, if,</b></p><p> Furthermore,if ;whereas,if ,then y=z=0
66、 in V. Therefore, the largest compact invariant set in is the singleton.The global stability o f w hen時,follow s from the LaSalles invariance principle[ 10] .</p><p> If,then for x sufficiently close toexc
67、ept when y=z=0,Therefore, trajectorie starting sufficiently close to leave a neighborhood of except those starting on the xaxis,on which model(3)reduces to,and thus, as t→∞.</p><p> Theorem 2 com
68、pletely determines the global dynamics of ( 3) in V for the case . Its epidemiological implication is that the infected fraction (the sum of the latent and the infectious fraction) of the population vanishes over time.&l
69、t;/p><p> Lemma 1 If system ( 3) is uniformly persistent in V in the sense that there exists a constant 0<ε< 1, such that any solution with</p><p><b> satisfies</b></p>
70、;<p> Proof We apply Theorem 4.5 in reference [ 4] to prove this Lemma. To demonstrate system ( 3) satisfies all the conditions of Theorem 4.5 in reference [ 4] when ,choose V=X,,V. is aisolated compact invari
71、ant set in X . Set , From Theorem 2, the homoclinic orbit containing E 0 does not exist, and M is a weak repeller for X 1 . T hen M is an acyclic isolated covering of . Thus, all the conditions of Theorem 4.5 in refere
72、nce [4] hold for ( 3) . The Lemma is proved.</p><p> In order to prove that the endemic equilibrium E is globally asymptotically stable, we need another technical lemma.</p><p> Lemma 2 Suppo
73、se is a solution to ( 3) with. If ,then there exists T0 > 0, such that the solution satisfies for .</p><p> Proof From the first equation of ( 3) , we have</p><p> If bq≥r , there is not
74、hing to prove. If bq < r , we let . Since , it is easy to see , thus. T hen we have when It follow s that for all larget. The conclusion of the lemma now follows.</p><p> Theorem 3 Assume that . T he
75、n the unique endemic equilibrium is globally asymptotically stable in V.</p><p> Proof From the discussion in section 1 and Lemma 1, we see that system ( 3) satisfies the assumptions and .</p><
76、p> The Jacobian matrix J associated with a general solution to ( 3) is</p><p> Its second additive compound matrix is:</p><p><b> (9)</b></p><p> For detailed dis
77、cussions of compound matrix and their properties we refer the reader to reference [9] .</p><p> Set the function P (x ) in ( 8) as , then</p><p> and the matrix in ( 8) can be written in bloc
78、k form </p><p><b> where </b></p><p><b> , ,</b></p><p> The vector norm in is chosen as. </p><p> Let μ(.) denote the Lozinski measure wi
79、th respect to this no rm. U sing the method of estimating μ(.) in reference [ 11] , we have </p><p><b> (10)</b></p><p><b> where</b></p><p> denote the L
80、ozinski measure with respect to the norm in . Since is scalar, its Lozinski measure with respect to any norm in R1 is equal to . , are matrix norms with respect to vector norm. therefore,</p><p> Where ,
81、From Lemma 2,we have, for , </p><p><b> ,.</b></p><p> Thus, for </p><p><b> (11)</b></p><p><b> (12)</b></p><p>
82、Rewriting ( 3) , we have</p><p><b> (13)</b></p><p><b> (14)</b></p><p> Substituting (13) into ( 11) and ( 14) into ( 12) , we obtain, for t > T 0 ,&l
83、t;/p><p> Therefore for .Along each solution is the compact absorbing set, we have, for </p><p> which in turn implies that from ( 7) , completing the proof of Theorem 3.</p><p&g
84、t; The Dynamics of the Population Size</p><p> We now turn to the dynamics of</p><p> and,which are governed by systems ( 1) . The fact that R( t ) does not appear in the first three equation
85、s in ( 1) allows us to study the equivalent system:</p><p><b> (15) </b></p><p> It is obvious that the total population size N (t ) may be increasing , decreasing or constant , de
86、pending on the growth rate r = b- d .</p><p> The proportions (x,y,z) might tend to or the endemic equilibrium , but the behavior of the proportions does not g iv e us much insight on the behavior of the t
87、otal number of infected individuals ( comprise E class and I class) . In particular, even if the total number of infected individuals increases exponentially but at a lower rate than the total population size N ( t ) , t
88、hen the proportion of the two tends to zero, however, the total number of infected individuals approach infinity. We can</p><p> We derived the following Theorem.</p><p> Theorem 4 </p>
89、<p> (a) The number of susceptible individuals S(t) increase (decrease) with exponential asymptotic rate b- d.</p><p> (b) Assume that then ifor .</p><p><b> Proof </b><
90、;/p><p> (a) From Theorem 2, implies that , from the first equation in (1) , we have . In the case , from Theorem 3, , we divide by S in the first equation in (1) and take the limit :</p><p> f
91、rom the first equation in (3) it follows that the equilibrium satisfies </p><p><b> Thus </b></p><p> (b) To see the behavior of E(t) and I (t) , consider the equations for E and I
92、</p><p><b> (16)</b></p><p> which is a perturbation of a linear system. The solutions to the principal part of (16) behave as claimed in the theorem, as do those for the perturbed
93、 system (16) since the perturbation decays exponentially as t→∞( see reference [10] ,Chapter 3,Theorem 2.3) .</p><p> Ttheorem 5 Assume that ,</p><p> (a) the number of individuals E(t) decre
94、ases if R 2 < 1 and increases if R2 > 1. Moreover, the exponential asymptotic rate of increase ( decrease) is</p><p><b> (17)</b></p><p> (b) the number of individuals I (t)
95、decreases if R2 < 1 and increases if R 2 > 1. Moreover, the exponential asymptotic rate of increase ( decrease) is</p><p><b> (18)</b></p><p> Proof If , from Theorem 3, we
96、haveand</p><p><b> (19)</b></p><p><b> Hence,</b></p><p><b> (20)</b></p><p> From the second equation in (1) and (19) , (20) we
97、 obtain (17) . From the third equation in (1) and(20) we also obtain (18) .</p><p> Acknowledgements We would like to thank the referees very much for their valuable comments suggestions.</p><p&g
98、t; References:</p><p> 茍清明.一類具有階段結構和標準發(fā)生率的SIS模型[J].西南大學學報:自然科學版,2007,29(9):6-13.</p><p> 茍清明,王穩(wěn)地.一類有遷移的傳染病模型的穩(wěn)定性[J].西南師范大學學報:自然科學版,2006,31(1):18-23.</p><p> Li M Y,Muldowney J S
99、. A Geometric Approach to Global-Stability Problems [J]. SIAM J Math Anal,1996,27(4):1070-1083.</p><p> Thieme H R. Persistence Under Relaxed Point-Dissipativity (with an Application to an Endemic Model) [J
100、]. SIAM J Math Anal,1993,24(2):407-435.</p><p> Driessche P Van den,Watmough J. Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission [J]. J Math Biosci,
101、2002(180):29-48.</p><p> Busenberg S,Cooke K. Vertical Transmission Diseaes,Models and Dynamics [M]. Berlin:Springer-Verlag,1993.</p><p> Li M Y,Smith H L,Wang L. Global Stability of an SEIR M
102、odel with Vertical Transmission [J]. SIAM J APPLMATH,2001,62(1):58-69.</p><p> Li M Y,Wang L. A Criterion for Stability of Matrices [J].J Math Anal Appl, 1998(225):249-264.</p><p> Muldowney J
103、 S.Compound Matrice and Ordinary Differential Equations [J].Roky Moun J Math,1990,20(4):857-872.</p><p> Hale J K.Ordinary Differential Equations [M].New York:Wiley-Interscience,1969: 296-297.</p>&l
104、t;p> Martin R H J R. Logarithmic Norms and Projections Applied to Linear Differential System [J]. J Math Anal Appl,1974 (45):432-454.</p><p> Thieme H R. Epidemic and Demographic Interaction in the Spre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 連續(xù)接種和脈沖接種在SEIRS流行病模型中的效應.pdf
- 異質流行病模型的穩(wěn)定性研究.pdf
- 19483.具有接種和垂直傳染的傳染病模型的研究
- 具有接種的乙肝年齡結構流行病模型的穩(wěn)定性分析.pdf
- 網(wǎng)絡環(huán)境下流行病模型的穩(wěn)定性研究.pdf
- 傳染病擴散模型的全局穩(wěn)定性.pdf
- 兩個隨機流行病模型的穩(wěn)定性.pdf
- 幾類媒介傳染病模型的全局穩(wěn)定性.pdf
- 三類傳染病模型的全局穩(wěn)定性.pdf
- 流行病模型的全局性態(tài).pdf
- 兩類登革熱傳染病模型的全局穩(wěn)定性.pdf
- 幾類HIV傳染病模型的全局穩(wěn)定性分析.pdf
- 復雜網(wǎng)絡中流行病模型的合局漸近穩(wěn)定性及分支.pdf
- 時滯Hopfield神經(jīng)網(wǎng)絡模型的全局漸近穩(wěn)定性,全局吸引性,全局指數(shù)穩(wěn)定性.pdf
- 幾類帶有隔離的傳染病模型的穩(wěn)定性分析.pdf
- 兩類傳染病模型的數(shù)值格式的全局穩(wěn)定性.pdf
- 幾類流行病模型的全局動力性質研究.pdf
- 22774.幾類帶有時滯的傳染病模型穩(wěn)定性分析
- 兩類傳染病模型的數(shù)值解及全局穩(wěn)定性.pdf
- 體重循環(huán)模型的全局穩(wěn)定性與減肥.pdf
評論
0/150
提交評論