版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Dye-sensitized solar cell (DSSC), photoelectrochemical device consisting of a dye-sensitized anode, a redox electrolyte, and a counter electrode, has attracted growing interests because of its merits on low-cost, relativ
2、ely high power conversion efficiency, easy fabrication, and environmentally friendly.The photoanode of DSSC can be seen as a 'vehicle' to transport the electrons injected from the excited dye molecule to an external circ
3、uit.Therefore, it can significantly affect photocurrent and photovoltage of the cells.The current DSSCs always suffer from incomplete dye excitation, recombination of photogenerated electrons with electrolyte, and dye de
4、gradation, giving unreasonable open-circuit voltage (Voc) and short-circuit current density (Jsc). Therefore, a prerequisite in elevatingpower conversion efficiency of DSSCs is to enhance their Voc and Jsc.
In the s
5、econd and third chapters, we demonstrate the critical issue of elevating dye excitation, suppressing electron-iodide recombination, and increasing dye stability is transmission enhancement of photoanode synthesized by in
6、corporating electron-insulating SiO2 with TiO2 via a hydrothermal process.However, the unfavorable power conversion efficiency is still a tremendous obstacle for this promising SiO2/TiO2 composite photoanode in highly ef
7、ficient DSSCs.Aiming at significantly improvng electron density collected on CB of TiO2 and therefore enhancing power conversion efficiency, our approach exploits employment of SiO2 during hydrothermal process,leading to
8、 an increased transmission of photoanode, decreased recombination reaction of electrons as well as improved dye loading and photostability.Through experiments,we have demonstrated that the incorporation of TiO2 by SiO2 i
9、s an effective strategy for enhancing dye excitation, suppressing backward recombination reaction of electrons and electrolyte, and increasing dye photostability.From transmittance test, we found that accession of SiO2 c
10、an make the light reaching the surface of TiO2 produce interference effects in order to enhance light intensity and improve excite the dye.From UV-vis diffuse reflection spectra, we found that the Eg is increased by inco
11、rporating SiO2 into TiO2 in comparison with that of pure TiO2 to decrease the photocatalytic ability of TiO2.From Raman and FTIR spectra, we found that detection of Si-O-Ti bond may be used to support the hypothesis that
12、 the amorphous SiO2 nanoparticles have been dissolved and reorganized in the hydrothermal process.Further proof, TiO2 doped by SiO2 can create more active sites for adsorption of the dye.From SEM and TEM, the functions o
13、f SiO2 can be concluded as follows: (i) elevating transmission of SiO2 incorporated TiO2 crystallite photoanode, giving increased dye-excitation efficiency and electron injection; (ii) covering TiO2 surface, blocking par
14、tial recombination reaction of electrons with electrolyte; (iii) doping TiO2 lattices, creating more active sites for dye adsorption.Incorporation of SiO2 with TiO2 is expected to give a block of electrons from electroly
15、te.And because of the added SiO2, recombination of electrons and electrolyte has been hindered obviously.The DSSC from 1 wt% SiO2 incorporated TiO2 nanocrystallite provides an impressive power conversion efficiency of 9.
16、98% in comparison with that of 6.13% from pure TiO2 photoanode.At the same time, Using TiO2/SiO2-(ii) the method efficiency composite anode obtained light has also been greatly improved.The DSSC from TiO2/SiO2-(ii) metho
17、d provides a higher power conversion efficiency of 9.83% than 7.06% from pure TiO2 based DSSC.
In the fourth chapter, chemical method is applied to synthesize the conductive PANi electrode doped by hydrochloric acid
18、, sulfuric acid and phosphoric acid, respectively.And the properties of the prepared PANi electrodes are characterized by UV-visible spectroscopy, infrared spectroscopy, Raman Spectroscopy, XRD, SEM cyclic, voltammetry,
19、impedance spectra and Tafel curves.The SEM test showed that, the PANi electrodes are nanostructures and evenly distributed on the conductive surface of the glass.Three pairs ofredox peaks are well distinguished in the cy
20、clic voltammograms for all the three electrodes, among which sulfuric acid
doped polyaniline electrode is the strongest and has an excellent electrochemical catalytic performance.The impedance spectra and Tafel curv
21、es showed that, the polyaniline electrode prepared by chemical methods obtain a lower resistance and an excellent performance.Meanwhile, the outstanding performance of the PANi doped by sulfuric acid is verified by the U
22、V-vis, IR, Raman Spectroscopy and XRD.Photovoltaic properties is characterized by assemble the polyaniline electrode and dye- sensitized titanium dioxide photo-anod.
After only about twenty years, DSSC research has
23、made great progress in all aspects of dyes, electrodes and electrolytes.At the same time, there are a lot of room for development in high efficiency, stability, durability and so on.This new type of solar cell has a broa
24、der purpose than silicon cells: plastic or metal sheets are available to make it lightweight and thin film; a variety of colorful dyes are available to make it colorful; in addition, it can also be designed into a variet
25、y of shapes solar cells to make it diversify.In short, DSSC has a very broad industrial prospects.And it is a fairly new type of solar cell which has a broad prospec.I believe that in the near future, DSSC will come into
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- A method for the preparation of hollow SiO2 and TiO2 particles.pdf
- 離子交聯(lián)處理棉織物的TiO2-SiO2溶膠整理.pdf
- 溶膠——凝膠法制備TiO2-SiO2復合減反自潔膜.pdf
- 納米TiO2-SiO2復合氧化物的制備及其性能研究.pdf
- 納米金紅石型TiO2-SiO2的制備及改性研究.pdf
- PREPARATION,CHARACTERIZATION OF VISIBLE-LIGHT ACTIVATED TiO2 CATALYSTS AND THEIR PHOTOCATALYTIC PERFORMANCE STUDY.pdf
- TiO2-SiO2殼核型光催化劑的制備與表征.pdf
- TiO2-SiO2復合光催化劑的制備及其性能的研究.pdf
- TiO2-SiO2光子晶體的層層自組裝制備及其結(jié)構(gòu)色性能研究.pdf
- 層層浸漬制備納米TiO2-SiO2多層膜及其結(jié)構(gòu)色性能的研究.pdf
- PVB改性聚氨酯的合成及其TiO2-SiO2納米復合膜的制備研究.pdf
- 共摻雜TiO2-SiO2催化劑的制備及光催化性能研究.pdf
- 低溫制備可見光響應的TiO2-SiO2薄膜及光催化降解應用研究.pdf
- Preparation and Device Applications of CuAlO2 and AlOx Thin Films.pdf
- 納米復合材料TiO2-SiO2對痕量鉛、鎘、銅的吸附性能研究與應用.pdf
- 改性非晶態(tài)TiO2-SiO2催化劑的制備及其催化苯乙烯環(huán)氧化研究.pdf
- TiO2-SiO2復合固相萃取填料的研究及其在血清磷脂組學中的應用.pdf
- TiO2-SiO2復合材料的制備及在酪蛋白磷酸肽分離方面的應用.pdf
- TiO2-SiO2增光光陽極的制備及其在染料敏化太陽電池中的應用.pdf
- 纖維負載納米TiO2-SiO2氣凝膠復合光催化劑的制備及自清潔性能研究.pdf
評論
0/150
提交評論