版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、深度信念網(wǎng)絡(luò)(Deep Belief Network, DBN)是近年來新興的一種機器學(xué)習(xí)模型。其動機在于模擬人的思維方式來學(xué)習(xí)、分析數(shù)據(jù),比如文本、聲音和圖像。DBN結(jié)合了無監(jiān)督預(yù)訓(xùn)練和有監(jiān)督微調(diào)的學(xué)習(xí)過程,具有自動提取樣本概率分布和獲取樣本本質(zhì)特征的優(yōu)勢,進而可以實現(xiàn)大數(shù)據(jù)的圖像識別。
本文在分析了現(xiàn)有的DBN理論的基礎(chǔ)上,深入研究了DBN圖像識別的改進算法及其應(yīng)用。具體研究內(nèi)容包括以下幾個方面。
針對DBN識別
2、性能不太高的缺點,提出了兩種DBN圖像識別的改進算法。一種是基于多尺度主線方向特征的DBN識別方法,該方法首先依據(jù)多尺度主線方向特征的提取流程,從樣本圖像中提取主線特征,然后將主線特征作為原幅值特征的指導(dǎo)信息,一起輸入到DBN網(wǎng)絡(luò)中;另外一種是基于差異稀疏化的DBN識別方法,該方法首先定義了差異的概念,將圖像的灰度值轉(zhuǎn)化成差異表示矩陣,實現(xiàn)了低灰度區(qū)域的擴張,高灰度區(qū)域的壓縮,增強了圖像的對比度,隨后對差異特征矩陣進行去均值、歸一化以及
3、稀疏化處理,最后將得到的稀疏化后的差異矩陣輸入到DBN網(wǎng)絡(luò)中。通過在MNIST、CIFAR-10以及SVHN等多個標(biāo)準(zhǔn)數(shù)據(jù)庫上的實驗表明,這兩種改進算法都能有效地提高DBN的識別性能。
接著,對企業(yè)生產(chǎn)中的故障指示器狀態(tài)檢測和絕緣子故障識別進行了研究與應(yīng)用,采用改進的DBN圖像識別方法進行了大量的實驗。結(jié)果顯示,兩個應(yīng)用在分類識別效果方面都取得了不錯的效果,同時,也驗證了改進算法的有效性和實用價值。最后,進一步提出了一種基于圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于顏色的圖像識別技術(shù)及其應(yīng)用研究.pdf
- 人工神經(jīng)網(wǎng)絡(luò)及其在圖像識別中的應(yīng)用研究.pdf
- 基于稀疏表示和深度學(xué)習(xí)的圖像識別算法及應(yīng)用研究.pdf
- 基于深度信念網(wǎng)絡(luò)的網(wǎng)絡(luò)水軍識別研究.pdf
- 深度神經(jīng)網(wǎng)絡(luò)的研究及其在植物葉片圖像識別中的應(yīng)用.pdf
- 基于深度學(xué)習(xí)的圖像識別方法研究與應(yīng)用.pdf
- 基于深度學(xué)習(xí)的水果圖像識別算法研究.pdf
- 基于深度神經(jīng)網(wǎng)絡(luò)的腦脊液圖像識別技術(shù)研究.pdf
- 深度信念網(wǎng)絡(luò)在巖石薄片圖像處理中的應(yīng)用研究.pdf
- 基于Hopfield網(wǎng)絡(luò)的圖像識別.pdf
- 基于匹配的圖像識別算法的應(yīng)用研究.pdf
- 深度學(xué)習(xí)在圖像識別中的研究及應(yīng)用.pdf
- 基于深度學(xué)習(xí)的腫瘤細(xì)胞圖像識別.pdf
- 深度學(xué)習(xí)圖像識別模型的優(yōu)化及應(yīng)用.pdf
- 基于深度信念網(wǎng)絡(luò)的人臉識別.pdf
- 基于深度神經(jīng)網(wǎng)絡(luò)的圖像識別系統(tǒng)的研究與改進.pdf
- 基于深度卷積神經(jīng)網(wǎng)絡(luò)的飛行器圖像識別算法研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的圖像識別與分類技術(shù)及應(yīng)用研究.pdf
- 人工神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用研究.pdf
- 基于特征的交通標(biāo)志圖像識別的應(yīng)用研究.pdf
評論
0/150
提交評論