(節(jié)選)外文翻譯--關(guān)于集裝箱碼頭的泊位配置的性能分析_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  中文3600字,2200單詞,1.1萬英文字符</p><p>  Performance analysis of berth con?gurations at container terminals</p><p>  Abstract :The containerized trade market has been growing rapidly since it

2、s intro</p><p>  duction. The capacity of ships and the amount of containers being transshipped at</p><p>  container terminals increases significantly. Terminals should handle their operations&

3、lt;/p><p>  ef?ciently to provide the necessary capacity and customer service. In designing a con</p><p>  tainer terminal, terminal management has to consider the choice for a certain type of</

4、p><p>  berth. In this paper, we compare by means of a simulation study the performance of</p><p>  traditional one-sided marginal berths and indented berths. An indented berth enables</p>&

5、lt;p>  quay cranes to unload and load containers from both sides of the ship. As a result, more quay cranes can work on a single ship. As main performance measure in this</p><p>  comparison we use the to

6、tal vessel operation time required to unload and load a ship.</p><p>  This time depends next to crane productivity also on the ef?ciency of the transportation and storage and retrieval processes in the term

7、inal. We have performed a sensitivity analysis in which we also study the relation between the selection of an indented berth and other design and control issues in the terminal.</p><p>  Keywords Container

8、terminals · Indented berth · Performance analysis ·</p><p>  Design · Simulation</p><p>  1 Introduction</p><p>  Since the 1950s, more and more cargo is being c

9、ontainerized and export and import</p><p>  is increasing on a global scale. The high growth rate of containerized trade is more</p><p>  recently initiated by the uprising of the Far East. The

10、capacity of ships has been</p><p>  extended up to 12,000 twenty feet equivalent unit container (TEU) to ensure that all</p><p>  containers can be transported worldwide from port to port. Ports

11、 should be responsive</p><p>  and on guard to handle and to transship these massive volumes of containers. Docking</p><p>  times of ships should be as short as possible to satisfy carriers and

12、 the shippers of</p><p>  containerized goods. In other words, all terminal processes should be performed as</p><p>  ef?ciently as possible.</p><p>  These processes are illustrate

13、d in Fig. 1 and can be described as follows.An arriving</p><p>  ship will moor at a berth. Quay cranes are positioned on the quays at the berth. These</p><p>  cranes unload containers accordin

14、g to an unload plan. Next, these containers need to</p><p>  be transported to the storage area (i.e., stack). Different types of transport systems can</p><p>  be used. When a terminal uses veh

15、icles without lifting capabilities (e.g., automated</p><p>  guided vehicles), a vehicle needs to be available to receive the container the moment</p><p>  the container has been taken out off t

16、he ship’s hold or deck. In that way delays in the</p><p>  unloading process can be limited. Consequently, the (un-)loading and transportation</p><p>  processes depend on each other. Self-lifti

17、ng vehicles (e.g., straddle carriers) are able</p><p>  to lift a container from the ground. When such a type of vehicle is deployed, quay</p><p>  cranes will position retrieved containers at a

18、 marshalling area at the quay. Here, the</p><p>  (un-)loading and transportation processes are decoupled. A marshalling area usually has a ?nite capacity which depends on the available space at the quay. A

19、self-lifting</p><p>  vehicle needs to lift a container before this area is completely full. In that way, a quay</p><p>  crane can continue its operation without any delays.</p><p>

20、;  The transport vehicles transship the containers to the stack to be stored. A stack</p><p>  consists of multiple blocks of containers. Each block of containers has multiple par-</p><p>  alle

21、l rows, each with a ?xed number of storage locations. Containers will be stored</p><p>  temporarily upon further transportation to their (?nal) destinations by other modes of</p><p>  transport

22、ation. Different types of storage equipment can be used to store and retrieve</p><p>  containers from the stack. (Automated) yard cranes span multiple rows of containers.</p><p>  They receive

23、containers from the transport vehicles and store them into the stack. If</p><p>  self-lifting vehicles execute the transportation process, it can be decided to have them</p><p>  store the cont

24、ainers in the stack by themselves. All processes can be executed in a</p><p>  reverse order to load containers on a ship. A load plan indicates the order in which</p><p>  containers should be

25、loaded on the ship.</p><p>  Terminal management needs to address multiple decision problems to design an</p><p>  ef?cient container terminal. Vis and De Koster (2003), Steenken et al. (2004) a

26、nd</p><p>  more recently Stahlbock and Voss (2008) provide an overview of all relevant decision</p><p>  problems and related literature. As described in Vis and De Koster (2003), three plan-&l

27、t;/p><p>  ning and control levels can be distinguished in this design process. At the strategic</p><p>  level, long-term decisions are taken which are mainly related to the terminal layout</p&

28、gt;<p>  and selection of the transport and storage systems to be used. The selection of the</p><p>  transport and storage systems directly in?uences the way all logistics processes will</p>&

29、lt;p>  be performed as explained in Fig. 1. Vis (2006) compares different types of storage</p><p>  123Performance analysis of berth con?gurations at container terminals 455</p><p><b> 

30、 Fig. 1</b></p><p>  Processes at a container terminal</p><p>  systems bymeans of a simulation study.Vis andHarika (2004) compare different types</p><p>  of transport system

31、s by performing a simulation study in which they model a terminal</p><p>  with lifting and non-lifting vehicles. Typical layout issues concern the selection of the</p><p>  type of berth used,

32、the locations of the stacks, and the speci?c layout of each of the</p><p>  individual areas. For example, Kim et al. (2007) compare various ways of positioning</p><p>  stacks to the berth, nam

33、ely parallel and perpendicular positioning. We will focus in</p><p>  this paper on the strategic problem of selecting the type of berth con?guration used in</p><p>  the terminal.</p>&l

34、t;p>  At the tactical level it has to be decidedwhich planning and control policies for each</p><p>  of the logistics processes in the terminal will be implemented. For example, a policy</p><p

35、>  needs to be selected to allocate ships to berths (e.g., Imai et al. 2001), to sequence</p><p>  storage and retrieval requests in the stack (e.g., Vis and Roodbergen 2009)ortodis-</p><p> 

36、 patch containers to vehicles (e.g., Bish et al. 2001). At the operational level all detailed daily decisions need to be made. Decisions at one level directly in?uence decisions</p><p>  at another level. Fo

37、r example, the layout of the terminal directly in?uences the per-</p><p>  formance of all logistics processes and the productivity of the terminal. Therefore, it</p><p>  is advised to consider

38、 the decisions at the various levels in relation to each other. In</p><p>  this paper, we will study the berth design selection problem in relation to other design</p><p>  and control issues i

39、n the terminal. From the literature overviews, we can conclude</p><p>  that simulation has achieved a growing importance among researchers and terminal</p><p>  operators to compare layout and

40、system alternatives, to test optimization methods and</p><p>  to study the impact of one decision on another (Steenken et al. 2004).</p><p>  The objective of this research is to study the stra

41、tegic decision problem of select-</p><p>  ing a type of berth for a container terminal. We perform a comparative analysis on</p><p>  various types of berth con?gurations by means of a simulati

42、on and study the impact</p><p>  on the logistics processes in the rest of the terminal. A traditional berth, also referred</p><p>  to as a marginal berth, consists of a single quay where ships

43、 can moor. An indented</p><p>  berth has quays at three sides of the ship. This type of berth enables quay cranes to</p><p>  unload and load ships at both sides of the ship and to stack contai

44、ners around the ship.</p><p>  As a result, more quay cranes can work simultaneously on a single ship. If all other</p><p>  terminal processes are designed well (i.e., layout, amount of equipme

45、nt and control</p><p>  policies) it might be expected that the terminal productivity will increase compared</p><p>  to a marginal berth. Possible designs for terminals with marginal and indent

46、ed berths</p><p>  are, respectively, depicted in Figs. 2 and 3.Worldwide only the Amsterdam Container</p><p>  Terminals (formerly: Ceres Paragon Terminal) in Amsterdam, The Netherlands has<

47、/p><p>  an indented berth. Therefore, we use data obtained from this terminal in our research.</p><p>  Imai et al. (2007) were among the ?rst authors to study an indented berth. The</p>&l

48、t;p>  authors study the berth allocation problem in indented berths. The model allows for</p><p>  multiple ships to moor at this type of berth at the same time. A direct consequence is</p><p&g

49、t;  that the inner most ship at the berth never can leave earlier than the outer most ships.</p><p>  Given this speci?c constraint and assumptions on different space requirements for each type of berth, the

50、 authors perform a simulation study to compare both types of berths.</p><p>  It is concluded that the total service time for serving multiple ships at the same time is</p><p>  higher with an i

51、ndented berth due to waiting times. In their experiments, the authors</p><p>  assume that a large ship in an indented berth actually occupies cranes operating at two</p><p>  berths. As a resul

52、t, fewer ships can be handled at the same time compared to marginal</p><p>  We extend the research of Imai et al. (2007) in this paper, by performing a more exhaustive comparison with multiple simulation ex

53、periments.</p><p>  Specifically, we consider two completely identical terminals except for speci?c</p><p>  berth con?guration characteristics, such as the quay crane assignment. Furthermore,&l

54、t;/p><p>  given the current increase in ship sizes and the design decisions made at the Amster-</p><p>  dam Container Terminals, we assume that an ef?cient terminal con?guration consists</p>

55、;<p>  either of multiple small indented berths each allowing a single ship to moor or a com-</p><p>  bination of an indented berth for a single ship and a marginal berth to handle multiple</p>

56、<p>  ships at the same time. This latter con?guration is implemented at Amsterdam Con-</p><p>  tainer Terminals. Here, both ships with a small workload (i.e., number of containers</p><p&g

57、t;  to be handled) and a large workload are handled in the indented berth. Ships moor at</p><p>  the north side of the berth. As a result, the processing times of QCs at the south side</p><p> 

58、 will be somewhat longer due to the fact that the containers need to be transported over</p><p>  water. Some of the quay cranes positioned at the indented berth are ?exible and can be</p><p>  

59、assigned to both types of berths. As a result, ships do not have to wait for each other</p><p>  to leave after the unloading and loading processes have been ?nished. Therefore, we</p><p>  will

60、 consider, contrary to Imai et al. (2007), the vessel operation time for a single ship</p><p>  as the main performance measure. Contrary to many other papers addressing terminal</p><p>  proces

61、ses (e.g., Vis and Harika 2004; Nguyen and Kim 2007) we study self-lifting</p><p>  vehicles that both perform the transportation and storage processes (refer to the left</p><p>  side of Fig. 1

62、). In Sect. 2, we will provide a more detailed problem description. Fur-</p><p>  thermore, we will de?ne a baseline scenario. Section 3 presents the speci?cations of</p><p>  the simulation mod

63、el. Results for all experiments including the baseline scenario and a sensitivity analysis will be described in Sect. 4. Section 5 presents conclusions.</p><p>  2 Problem description</p><p>  W

64、e consider the following situation. Either the terminal has an indented berth or a</p><p>  marginal berth where a ship with a known workload can moor. Containers are being</p><p>  unloaded (im

65、port) and loaded (export) by Quay Cranes (QCs). The number of QCs</p><p>  assigned to a ship differs per type of berth and the number of containers to be handled.</p><p>  A marshalling area is

66、 available at each QC, where QCs can drop off import containers</p><p>  and to pick up delivered export containers. Straddle Carriers (SCs) perform both the</p><p>  transportation and the stor

67、age and retrieval process. The SCs travel along pre-de?ned</p><p>  paths between the stack and the ship. We consider both the unloading and loading</p><p>  process of a ship. As a result, we c

68、an use the total time required to handle a single ship</p><p>  as performance measure in our comparison.</p><p>  As explained in Sect. 1, we will use operational data of Amsterdam Container Te

69、r-</p><p>  minals in the Netherlands in our simulation study. This terminal covers 54 hectares of</p><p>  ground and has a total quay length (including both an indented and marginal berth)<

70、/p><p>  of 1050m. The annual capacity of the terminal is estimated to be 1,000,000 TEUs.</p><p>  At most 9 QCs can be scheduled to handle a ship at the indented berth. The indented</p><

71、;p>  berth has a length of 400m and a width of 57m. The total time to moor at the quay</p><p>  of the indented berth (i.e., berth time) equals, according to estimates of Amsterdam</p><p>  C

72、ontainer Terminals, 15min. For more detailed information on this terminal and the</p><p>  port of Amsterdam, we refer to Kroon and Vis (2008).</p><p>  In this study, we use data collected at t

73、he indented berth in the period June 2006–</p><p>  May 2007. We consider a comparable con?guration for a terminal with a marginal</p><p>  and a terminal with an indented berth to perform a fai

74、r comparison.We will only vary</p><p>  speci?c berth type characteristics such as the number of QCs.</p><p>  Summarizing, the main assumptions in our model are:</p><p>  ? We stud

75、y a single ship in one type of berth at the same time in our model. As a</p><p>  result, QCs that ?nish their jobs will not be assigned to a new set of tasks but will</p><p>  remain idle until

76、 the ship leaves the berth.</p><p>  ? At each QC a marshalling area with known storage capacity is available (see</p><p>  Sect. 2.1).</p><p>  ? The exact number of bays in a ship

77、 is known in advance (see Sect. 2.2).</p><p>  ? The exact number of import and export containers and their distribution over the</p><p>  various bays are known in advance (see Sect. 2.2).</

78、p><p>  ? A QC planning method is available to assign and schedule QCs in advance (see</p><p>  Sect. 2.3).</p><p>  ? The exact number of SCs in a pool assigned to each crane operatin

79、g at a ship is</p><p>  known in advance (see Sect. 2.4)</p><p>  ? SCs are assigned to requests based on the heuristic rule “nearest-vehicle-?rst” (see</p><p>  Sect. 2.4).</p&g

80、t;<p>  ? The storage capacity assigned to a ship is known in advance (see Sect. 2.5)</p><p>  關(guān)于集裝箱碼頭的泊位配置的性能分析</p><p>  摘要:集裝箱貿(mào)易采用后,市場一直在快速增長。船舶運載能力和在集裝箱碼頭間被轉(zhuǎn)運的集裝箱數(shù)量顯著增加。碼頭應(yīng)該有效的處理他們的業(yè)務(wù),

81、以便于提供必要的能力和客戶服務(wù)。設(shè)計集裝箱碼頭時,碼頭管理部門首先應(yīng)該考慮去選擇一個合理的碼頭泊位類型。在本文中,我們通過仿真研究傳統(tǒng)的順岸式泊位和凹岸式泊位的性能,在凹岸式泊位上,碼頭起重機可以從船的兩邊同時裝卸集裝箱,因此,更多的碼頭起重機能夠工作在一艘船上。作為主要的性能估量,我們通過整個船的裝卸作業(yè)時間的比較。這個時間取決于碼頭起重機的工作效率,也取決于碼頭的運輸效率。</p><p>  同時,關(guān)于碼頭

82、的儲存和檢索過程,我們已經(jīng)進行了敏感性分析,并且也探討了在選擇凹岸式泊位和其他設(shè)計類型的聯(lián)系,還有碼頭上的控制問題。</p><p>  關(guān)鍵詞:集裝箱碼頭,凹岸式泊位,性能分析,碼頭設(shè)計,泊位模擬</p><p><b>  1 介紹</b></p><p>  自19世紀50年代以來,越來越多的貨物被集裝箱化,且進出口在全世界范圍內(nèi)增長。集

83、裝箱貿(mào)易的高速增長率與遠東地區(qū)的興起有聯(lián)系。船只的運載能力達到12000 TEU (TEU:指集裝箱運輸?shù)臉藴氏洌?,確保了所有的集裝箱可以在世界范圍內(nèi)的碼頭之間運輸。碼頭應(yīng)當響應(yīng)和防范處理、轉(zhuǎn)運這些巨大容積的集裝箱。入塢時間應(yīng)盡可能短,以滿足集裝箱貨物的托運人和運送者的要求。換句話說,所有的碼頭轉(zhuǎn)運過程應(yīng)該盡可能高效的執(zhí)行。</p><p>  這些過程如圖1所示,可以描述如下,一艘船到達泊位停泊之前,碼頭起重

84、機被安置在碼頭相應(yīng)泊位上,這些起重機根據(jù)卸載計劃卸載集裝箱;接下來,這些集裝箱需要被運輸?shù)酱鎯^(qū)域(例如:堆場);不同類型的運輸系統(tǒng)會被使用到,當碼頭使用沒有起重功能的交通工具(例如:自動化引導(dǎo)車輛),該類設(shè)備能夠在集裝箱從船或甲班上卸載下來的時候,起到裝載的作用,這種方式可以有效控制卸載過程的延誤,因此,裝卸、載和運輸過程相互依賴。自升式工具(例如:跨車)能夠從地面上起重集裝箱,當配置自升式設(shè)備的時候,碼頭起重機將重新取回集裝箱從存儲

85、區(qū)。這種方式,裝卸,載和運輸過程是相互獨立的,存儲區(qū)的容量取決于在碼頭上可用空間,自升式設(shè)備需要起重集裝箱當這個區(qū)域裝載滿之前。這樣,碼頭起重機可以繼續(xù)操作而沒有任何延遲。</p><p>  運輸車把集裝箱轉(zhuǎn)運到堆場存儲,一個堆場由多個集裝箱區(qū)域組成,每個集裝箱區(qū)域由多條平行線組成,每個都有固定的存儲位置。集裝箱被暫時存儲在堆場,直到其他類型的運輸設(shè)備將其運輸?shù)阶罱K的目的地。不同的類型的存儲設(shè)備可以用來從堆場存

86、儲和取回集裝箱,(自動型)移動吊車可以橫跨多排集裝箱,移動吊車可以從運輸設(shè)備上卸載集裝箱,也可以把集箱存儲在碼頭堆場。如果自升設(shè)備被用來執(zhí)行運輸過程,它們可以自己決定集裝箱在堆場的存儲區(qū)域,這些過程的執(zhí)行命令同向船上裝載集裝箱相反,裝載計劃表明的順序是集裝箱在船上被裝載。碼頭管理部門要解決多個問題,以便設(shè)計一個高效的集裝箱碼頭。VIS(2003)、De Koster (2003), Steenken et al. (2004) 、Sta

87、hlbock(2008) 、Voss (2008) 提供了一個關(guān)于所有相關(guān)決定問題的綜述和有關(guān)文獻。正如Vis(2003) 、 De Koster (2003)所總結(jié)的,設(shè)計過程可以被劃分為三個計劃和控制階段。在規(guī)劃階段,需要做關(guān)于碼頭布置和運輸設(shè)備的選擇,以及使用哪種存儲系統(tǒng)。運輸系統(tǒng)的選擇和存儲系統(tǒng)將直接影響所有的物流流程如圖一示例</p><p><b>  自升式設(shè)備</b><

88、/p><p><b>  非自升式設(shè)備</b></p><p><b>  圖一</b></p><p>  集裝箱碼頭的運作流程通過模擬進行研究,Vis(2004)和Harika(2004)通過模擬碼頭,分別是有自升式設(shè)備和非自升式設(shè)備,來進行不同的運輸系統(tǒng)的比較研究。典型的布置問題包括:一、泊位類型的選擇,二、堆場的位置,

89、三、每個個體的具體布局區(qū)域。例如,Kim et al.(2007)比較堆場和泊位的位置分別在平行,垂直情況下的關(guān)系。在本文中,我們將集中關(guān)注如何在規(guī)劃階段在碼頭配置合理的泊位。</p><p>  而在決策階段,主要是決定碼頭建設(shè)的計劃和控制方法的邏輯過程。例如,需要選擇將船駛向泊位的策略(例如:Imai et al 2001),在堆場如何存儲和取回需要的集裝箱(例如:Vis和Roodbergen 2009)或者

90、運載集裝箱到其他設(shè)備上(例如:Bish et al.2001)。</p><p>  在實施階段,對于日常所需要做的都做了詳細的規(guī)劃,決定在某種程度上直接影響規(guī)劃的另一階段。例如,碼頭的布置直接影響下一次的物流流程和碼頭的生產(chǎn)力。因此,做出的決定需要在不同水平考慮區(qū)域個體之間的聯(lián)系。在本文中,我們將研究泊位的設(shè)計的選擇同碼頭上其他的設(shè)計和控制問題的聯(lián)系,通過概述我們可以得知,對于研究人員和碼頭工作人員模擬方法在碼

91、頭布置和選擇、檢測選擇的方法和研究決定之間的相互影響起到越來越重要的作用(Steenken et al.2004)。</p><p><b>  圖二 </b></p><p>  本研究的目的是觀察選擇一種類型的集裝箱碼頭泊位的決策問題,我們模擬各種類型的泊位配置來進行比較分析和研究對其他碼頭物流流程的影響。傳統(tǒng)的泊位,也被稱為邊際泊位,由船舶可以停泊的單一碼頭組成

92、。凹岸式泊位船的三側(cè)都是碼頭,這種泊位可以在船的兩側(cè)同時用碼頭起重機裝載和卸載集裝箱,并且可以在船的兩側(cè)堆放集裝箱。因此,更多的碼頭起重機可以通手機工作在一個船,如果其他所有的碼頭過程被設(shè)計好(比如:布置,設(shè)備和控制方法),人們會期望碼頭生產(chǎn)力相比邊際泊位將會增加??赡艿挠羞呺H的碼頭設(shè)計和凹岸式泊位在圖二和圖三中分別有被描述,世界上僅阿姆斯特丹集裝箱碼頭在阿姆斯特丹(原名:谷神星典范碼頭),荷蘭有一個凹岸式泊位,因此,我們使用在碼頭研究

93、上所獲得的數(shù)據(jù)。Imai et al.(2007)是研究凹岸式泊位的創(chuàng)始人之一,這些人主要研究凹岸式泊位的泊位分配問題。凹岸式泊位允許多艘船舶同時停靠在一個泊位中,一個直接后果就是內(nèi)部的大多數(shù)船在外部船離開之前離開,鑒于這種特殊的約束和假設(shè)在不同的空間需求類型的泊位,作者進行模擬研究比較兩種類型的泊位。</p><p>  在凹岸式泊位的模擬研究中,因為船舶等待時間較長,而是同時服務(wù)多艘船只的總時間較長。且研究人

94、員假設(shè)一艘大型船舶在一個凹岸式泊位中實際需要占據(jù)兩個泊位的起重機來進行操作,因此,相對于順岸式泊位,凹岸式泊位的工作效率較低。我們進一步擴展Imai et al.(2007)的研究,通過執(zhí)行以更詳盡的更加多樣化的模擬對比實驗。</p><p>  圖三 凹岸式泊位與堆場的位置關(guān)系圖</p><p>  具體的說,我們研究除了泊位結(jié)構(gòu)配置不同的兩個完全相同的碼頭,如碼頭起重機作業(yè)。此外,鑒于

95、現(xiàn)在船型的不斷增長和阿姆斯特丹集裝箱碼頭所做的設(shè)計決定,我們假設(shè)一個有效率的碼頭配置:一、有多個小的凹岸式泊位能允許單艘船舶停泊,二、有多個凹岸式泊位可以同時為一艘船工作和有順岸式泊位可以同時為多艘船工作,上述的第二種泊位配置在阿姆斯特丹集裝箱碼頭有較好的應(yīng)用。應(yīng)用這種配置,每艘船有一個工作區(qū)域(大量的集裝箱被裝卸)和每一個凹岸式泊位都有一個大型的船舶工作區(qū)域。船舶停泊在泊位的北邊,因此,在順岸式碼頭中碼頭起重機在南邊的作業(yè)時間會相對較

96、長因為集裝箱需要跨水面運輸;而在凹岸式泊位的一部分碼頭起重機是比較靈活的,因為可以分配在泊位的兩側(cè)工作,因此船舶不需要在裝載、卸載后等待離開;同時,我們還需要考慮以下情況,與Imai et al.(2007)的結(jié)論相反,把一艘船的船舶操作時間作為主要的性能指標的參考。與許多其他論文研究的碼頭流程相反(例如:Vis和Harika 2004;Nguyen和Kim 2007,我們研究的自升式設(shè)備可以完成運輸和存儲過程(參照圖一的左側(cè)流程),在

97、第二章節(jié)中我們將對問題進行更加詳</p><p><b>  2 問題描述</b></p><p>  我們考慮了以下情況:一、碼頭有凹岸式泊位,二、碼頭有確定船舶停泊的工作區(qū)的順岸式泊位。碼頭起重機卸載(進口)集裝箱和裝載(出口)集裝箱,碼頭起重機被分配到到船所對應(yīng)的相應(yīng)泊位部分,并且有相應(yīng)的集裝箱需要被處理。</p><p>  碼頭起重機

98、可以方便的向堆場堆放集裝箱和將堆場的集裝箱轉(zhuǎn)運出去,跨式起重機可以執(zhí)行運輸、存儲、轉(zhuǎn)運流程,跨式起重機沿著堆場和船舶之間預(yù)先設(shè)定的道路運輸。因為我們需要考慮到集裝箱從船舶上的裝載和卸載過程,所以我們應(yīng)該把使用的總時間作為衡量泊位的工作效率來進行比較。</p><p>  正如在第一章節(jié)中提到的,在模擬研究中我們將使用荷蘭阿姆斯特丹集裝箱碼頭的工作數(shù)據(jù),阿姆斯特丹碼頭占地54公頃,有長度達1050米的碼頭(包括凹岸

99、式泊位和順岸式泊位),碼頭的年容量預(yù)計達到1000000標準箱。</p><p>  在一個長400米,寬57米的凹岸式泊位中最多可以同時安排九臺碼頭起重機對船舶進行作業(yè)。根據(jù)阿姆斯特丹集裝箱碼頭的數(shù)據(jù),船舶停泊在凹岸式泊位大概需要花費15分鐘。我們參照Kroon和Vis(2007),為了獲得關(guān)于阿姆斯特丹港口更加詳細的數(shù)據(jù)。</p><p>  在研究中,使用了從2006年6月到2007

100、年5月期間所收集到的數(shù)據(jù),我們用一個類似的配置有順岸式泊位和凹岸式泊位的碼頭來進行公平的比較,且僅控制如碼頭起重機的數(shù)量等一些特定的泊位類型。</p><p>  在研究中主要的模型假設(shè)如下:</p><p>  ?在模型中一次只考慮一艘船舶,因此碼頭起重機在完成作業(yè)后不會被安排新的任務(wù),而是閑置在碼頭上直到船舶離開。(文中2.1)</p><p>  ?集結(jié)區(qū)的碼

101、頭起重機的裝載能力是已知的。(文中2.2)</p><p>  ?一艘船裝載集裝箱的安排是提前知道的(文中2.2)</p><p>  ?集裝箱需要輸入和輸出的具體數(shù)目,且在不同的船上的分配是已知的。(文中2.2)</p><p>  ?碼頭作業(yè)能提前安排豬狗的碼頭起重機(文中2.3)</p><p>  ?碼頭作業(yè)需要的跨式起重機的數(shù)目是提

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論