版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 附 錄</b></p><p> Kinematic Characterization and Optimization of Vehicle Front-suspension Design Based on ADAMS</p><p> Abstract: To improve the suspension performance
2、 and steering stability of light vehicles, we built a kinematic simulation model of a whole independent double-wishbone suspension system by using ADAMS software, created random excitations of the test platforms of respe
3、ctively the left and the right wheels according to actual running conditions of a vehicle, and explored the changing patterns of the kinematic characteristic parameters in the process of suspension motion. The irrational
4、ity of the su</p><p> Keywords: vehicle suspension; vehicle steering; riding qualities; independent double-wishbone suspension; kinematic characteristic parameter; wheel-center distance; front-wheel sideway
5、s slippage</p><p> 1 Introduction</p><p> The function of a suspension system in a vehicle is to transmit all forces and moments exerted on the wheels to the girder frame of the vehicle, smoo
6、th the impact passing from the road surface to the vehicle body and damp the impact-caused vibration of the load carrying system. There are many different structures of vehicle suspension, of which the independent double
7、-wishbone suspension is most extensively used. An independent double-wishbone suspension system is usually a group of space RSSR (r</p><p> In this paper, we used ADAMS software to build a kinematic analysi
8、s model of an independent double-wishbone suspension, and used the model to calculate and optimize the kinematic characteristic parameters of the suspension mechanism. The optimization results are helpful for improving t
9、he kinematic performance of suspension.</p><p> 2 Modeling independent double-wishbone suspension</p><p> The performance of a suspension system is reflected by the changes of wheel alignment
10、 parameters when the wheels jump. Those changes should be kept within rational ranges to assure the designed vehicle running performance. Considering the symmetry of the left and right wheels of a vehicle, it is appropri
11、ate to study only the left or the right half of the suspension system to understand the entire mechanism, excluding the variation of WCD (wheel center distance). We established a model of the lef</p><p> 3
12、 Kinematic simulation analysis of suspension model</p><p> Considering the maximum jump height of the front wheel, we positioned the drives on the translational joints between the ground and the test platfo
13、rm, and imposed random displacement excitations on the wheels to simulate the operating conditions of a vehicle running on an uneven road surface.</p><p> The measured road-roughness data of the left and ri
14、ght wheels were converted into the relationship between time and road roughness at a certain vehicle speed. The spline function CUBSPL in ADAMS was used to fit and generate displacement-time history curves of excitation.
15、 The simulation results of the suspension system before optimization are illustrated in Figure 2.</p><p> The camber angle, the toe angle, the caster angle and the inclination angle change only slightly wit
16、hin the corresponding designed ranges with the wheel jumping distance. This indicates an under-steering behavior together with an automatic returnability, good steering stability and safety in a running process. However,
17、 WCD decreases from 1 849.97 mm to 1 896.98 mm and FWSS from 16.48 mm to -6.99 mm, showing remarkable variations of 47.01 mm and 23.47 mm, respectively. Changes so large in WCD and</p><p> For independent s
18、uspensions, the variation of WCD causes side deflection of tires and then impairs steering stability through the lateral force input. Especially when the right and the left rolling wheels deviate in the same direction, t
19、he WCD-caused lateral forces on the right and the left sides cannot be offset and thus make steering unstable. Therefore, WCD variation should be kept minimum, and is required in suspension design to be within the range
20、from -10 mm to 10 mm when wheels jump. It i</p><p> ADMAS software is a strong tool for parameter optimization and analysis. It creates a parameterization model by simulating with different values of model
21、design variables, and then analyzes the parameterization based on the returned simulation results and the final optimization calculation of all parameters. During optimization, the program automatically adjusts design va
22、riables to obtain a minimum objective function [8-10]. To reduce tire wear and improve steering stability, the Table 1 Values </p><p> Table 1 The data tables of optimize the results</p><p>
23、4 Conclusions</p><p> The whole kinematic simulation model of an independent double-wishbone suspension system built by using ADAMS software with the left and the right suspension parts under random excita
24、tions can improve the calculation precision by addressing the mutual impacts of kinematic characteristic parameters of the left and the right suspension parts under random excitations. The optimization can overcome the p
25、roblem of the too large variation of WCD and overly large FWSS with the wheel jumping distance. T</p><p> Figure 1 simple picture of suspension</p><p> Figure 2 Curve with the parameters of
26、the suspension</p><p> 基于ADAMS前懸架優(yōu)化設(shè)計</p><p> 摘要:為了提高輕型車輛性能和行駛穩(wěn)定,我們使用ADAMS軟件建立一個獨立雙橫臂懸架系統(tǒng)運動仿真模型,并建立隨機激勵的測試平臺,根據(jù)車輛實際運行條件,探討懸架的運動學特征參數(shù)的變化。通過仿真和優(yōu)化的可以對懸架設(shè)計進行相關(guān)的指導。試驗表明,所有的前輪定位參數(shù),包括前輪前束角,主銷內(nèi)傾角,注銷后傾
27、角,前輪外傾角都可以得到優(yōu)化。例如只要在仿真前或后改變一個很小的量,車輪中心距就可以從減小到許用范圍從而改善了車輛的操縱穩(wěn)定性。此外還優(yōu)化了前輪側(cè)向滑動量,使之減小到,更有助于減少輪胎磨損,保證車輛的行駛穩(wěn)定性。</p><p> 關(guān)鍵詞:汽車懸架;車輛轉(zhuǎn)向;駕駛性能;獨立雙橫臂懸架;運動學特征參數(shù);輪中心距;前輪側(cè)向滑移</p><p><b> 1簡介</b>
28、</p><p> 汽車懸架的功用時承受來自地面?zhèn)髦淋嚿淼臎_擊,保證車輛在行駛過程中的操縱穩(wěn)定性和平順性的系統(tǒng)。懸架有很多種類,其中雙橫臂獨立懸架時應(yīng)用最為廣泛的一種。獨立的雙橫臂懸掛系統(tǒng)通常是一組空間四連桿機制。其運動關(guān)系復雜,性能分析是非常困難。因此,合理的設(shè)置參數(shù)對指導其設(shè)計是至關(guān)重要的。為確保汽車具有良好的性能,特別是操縱穩(wěn)定性,乘坐舒適,轉(zhuǎn)向緩和,輪胎壽命。因此對懸架的設(shè)計時非常重要的。在本文中,我們
29、使用ADAMS軟件建立一個獨立的雙橫臂懸掛系統(tǒng)的運動學分析模型,并利用該模型計算和優(yōu)化的運動特征參數(shù)。優(yōu)化的結(jié)果,有助于知道我們對懸架的設(shè)計。</p><p> 2獨立雙橫臂懸架的建模 </p><p> 當車輪跳東時懸掛系統(tǒng)的性能受到車輪定位參數(shù)變化的影響。這些變化應(yīng)保持在合理的范圍,以保證所設(shè)計的車輛行駛性能??紤]到獨立懸架的左,右車輪是對稱的,因此我們只要研究左側(cè)或右側(cè)
30、的懸掛系統(tǒng),就可以了解整個懸架系統(tǒng),但不包括車輪中心的距離的變化 。我們建立一個如圖1所示的模型,此模型為獨立雙橫臂懸掛系統(tǒng)的左側(cè)系統(tǒng)。</p><p> 3懸架模型運動學仿真分析</p><p> 考慮到前輪最大的跳動高度,我們在地面和測試平臺放置一個上、下運動的驅(qū)動幅,并加上車輛在路面上實際運動時上、下運動的關(guān)系加上隨機激勵。</p><p> 實測的道路
31、粗糙度數(shù)據(jù)是根據(jù)左,右車輪在一定時間內(nèi)、一定車速和路面的不平度轉(zhuǎn)化的。并對樣條函數(shù)斯進行了擬合,并產(chǎn)生位移時程曲線的激勵。經(jīng)過仿真可以得到前懸架系統(tǒng)隨各運動參數(shù)變化而變化的曲線,如圖2所示。</p><p> 隨著車輪的跳動,前輪外傾角、前輪前束角、主銷后傾角和主銷內(nèi)傾角在相應(yīng)的設(shè)計范圍內(nèi)變化很小。這表明行駛時將產(chǎn)生一個的回正力矩,來保證行駛的平順性和安全性,然而側(cè)向滑動量卻從上升到,車輪跳動量從下降到。從中可
32、以看到對影響行駛穩(wěn)定性和加速輪胎磨損從而降低輪胎壽命的側(cè)向滑動量和車輪跳動量都具有明顯的變化。他們的變化量分別為和。 對于獨立懸架,側(cè)向滑動量的變化對輪胎的磨損具有負面影響,并通過側(cè)向力的作用影響駕駛的平穩(wěn)性,特別是當左右車輪同向偏離時。側(cè)向力造成的權(quán)利和左右兩側(cè)不能抵消,從而使轉(zhuǎn)向不穩(wěn)定。因此,側(cè)向滑動量的變化應(yīng)保持最低限度,按照懸架設(shè)計要求,當車輪跳動時其值必須控制在~之間。很明顯,側(cè)向滑動量的非結(jié)構(gòu)優(yōu)化的懸掛系統(tǒng)超出了這個
33、范圍。因此,此結(jié)構(gòu)必須根據(jù)車輪的跳動量改變。</p><p> ADMAS是一個具有優(yōu)化和仿真強強大功能的軟件。它通過創(chuàng)建一個參數(shù)化模型,通過改變設(shè)計變量的值再返回到模型,模型再根據(jù)返回的值進行優(yōu)化分析,經(jīng)過反復的優(yōu)化分析目標函數(shù)就可以調(diào)整到最小。以減少輪胎磨損,提高操縱穩(wěn)定性為目標函數(shù)進行優(yōu)化,表1的中的值分別為車輪外傾角,主銷內(nèi)傾角角 ,前輪前束角和注銷后傾角優(yōu)化前后值的比較。</p><
34、;p> 表1 優(yōu)化結(jié)果數(shù)據(jù)表</p><p><b> 4結(jié)論</b></p><p> 獨立的雙橫臂懸架系統(tǒng)的整個運動仿真過程是建立在ADAMS軟件上,由于左右懸架自由運動可以提高在隨機激勵下的計算精度,解決運動學特征參數(shù)的相互影響的。優(yōu)化可以解決側(cè)向滑動量變化太大和車輪跳動距離過大的問題。使懸架系統(tǒng)的運動學特征參數(shù)在一個理想的范圍變化,這就表明優(yōu)化結(jié)果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于ADAMS的麥弗遜前懸架優(yōu)化研究.pdf
- 基于ADAMS的麥弗遜前懸架優(yōu)化研究.pdf
- 基于ADAMS的麥弗遜前懸架優(yōu)化研究.pdf
- 基于ADAMS懸架系統(tǒng)分析與優(yōu)化設(shè)計.pdf
- 基于ADAMS的車輛懸架系統(tǒng)動力優(yōu)化研究.pdf
- 基于ADAMS的電動汽車前懸架設(shè)計與優(yōu)化.pdf
- 基于ADAMS的平順性仿真及懸架參數(shù)優(yōu)化.pdf
- 基于ADAMS的懸架系統(tǒng)動力學仿真分析與優(yōu)化設(shè)計.pdf
- 基于ADAMS的汽車懸架與輪胎性能匹配優(yōu)化研究.pdf
- adams生成仿真懸架
- ADAMS懸架模型.rar
- ADAMS懸架模型.rar
- ADAMS懸架模型.rar
- ADAMS懸架模型.rar
- 基于ADAMS主動懸架控制策略研究.pdf
- 基于ADAMS的麥弗遜式懸架的結(jié)構(gòu)優(yōu)化分析.pdf
- 基于ADAMS的麥弗遜式懸架系統(tǒng)的虛擬仿真分析及其優(yōu)化設(shè)計.pdf
- 基于ADAMS的某型轎車懸架及轉(zhuǎn)向系統(tǒng)參數(shù)優(yōu)化.pdf
- 基于ADAMS的麥弗遜式懸架的結(jié)構(gòu)優(yōu)化分析.pdf
- 基于ADAMS的麥弗遜式懸架運動學仿真分析與優(yōu)化設(shè)計.pdf
評論
0/150
提交評論