版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、南京航空航天大學碩士學位論文兩類細胞神經網絡周期解的存在性與全局指數(shù)穩(wěn)定性姓名:周平平申請學位級別:碩士專業(yè):應用數(shù)學指導教師:陳芳啟20081201兩類細胞神經網絡周期解的存在性與全局指數(shù)穩(wěn)定性 iiAbstract At present, cellular neural networks, especially the research of the periodic solutions, have become a hot res
2、earch topic in the field of mathematics. It’s well know that the periodic phenomenon exists generally in the natural world. For instance, lots of biologic systems lie in the environment of periodic variation and many dyn
3、amics have the periodic characteristics. Some applications in the fields of cell neural networks demand that the networks search the only goal rapidly. Considering the convergence rate, the unique balance point of global
4、 exponential stabilization is requested in the networks. So it is important to study the existence and global exponential stability of periodic solutions for cellular neural networks. In this paper, we discuss the existe
5、nce and global exponential stability of periodic solutions for two classes of cellular neural networks, respectively. First, a class of Cohen-Grossberg neural networks with time-varying delays is studied. Assume that the
6、 behaved functions, amplification functions, and the activation functions satisfy the linear restrictions, we propose some new sufficient conditions which guarantee the existence of periodic solutions, by using the Mawhi
7、n’s continuation theorem for coincidence degree and some inequality analysis techniques. Based on Lyapunov functional method, the global exponential stability of periodic solutions for this class of neural networks is pr
8、esented. Then, we discuss a class of bidirectional associative memory neural networks with distributed delays. Under the conditions of the state functions satisfying the linear restrictions, the existence and global expo
9、nential stability of periodic solutions for this class of neural networks are given, by using the Mawhin’s continuation theorem and proper Lyapunov function. The results of this thesis are better than those existed alrea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兩類離散神經網絡周期解的存在性與指數(shù)穩(wěn)定性.pdf
- 兩類神經網絡模型的全局指數(shù)穩(wěn)定性研究.pdf
- 兩類神經網絡的指數(shù)穩(wěn)定性.pdf
- 兩類人工神經網絡偽概周期解的存在性及其穩(wěn)定性.pdf
- 時滯細胞神經網絡的周期解、概周期解和全局指數(shù)穩(wěn)定性.pdf
- 兩類時滯細胞神經網絡模型的指數(shù)穩(wěn)定性.pdf
- 具混合時滯細胞神經網絡的周期解與概周期解的存在性和指數(shù)穩(wěn)定性.pdf
- 幾類時滯神經網絡周期解的存在性和指數(shù)穩(wěn)定性.pdf
- 模糊神經網絡周期解的指數(shù)穩(wěn)定性.pdf
- 幾類細胞神經網絡的穩(wěn)定性與周期解.pdf
- 離散雙向聯(lián)想記憶神經網絡模型周期解的存在性與指數(shù)穩(wěn)定性.pdf
- 幾類延時細胞神經網絡的全局指數(shù)穩(wěn)定性.pdf
- 兩類時滯遞歸神經網絡的全局穩(wěn)定性分析.pdf
- 時滯Hopfield神經網絡模型的全局漸近穩(wěn)定性,全局吸引性,全局指數(shù)穩(wěn)定性.pdf
- 兩類延時神經網絡的穩(wěn)定性研究.pdf
- 兩類神經網絡模型的穩(wěn)定性研究.pdf
- 42427.兩類系統(tǒng)的解的存在性和指數(shù)穩(wěn)定性
- 兩類具有反應擴散的BAM神經網絡的指數(shù)穩(wěn)定性.pdf
- 兩類時滯細胞神經網絡的穩(wěn)定性分析.pdf
- 兩類時滯靜態(tài)遞歸神經網絡的指數(shù)穩(wěn)定性分析.pdf
評論
0/150
提交評論