版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、7Ch.2曲線論曲線論1曲線與矢函數(shù)曲線與矢函數(shù)一般地說(shuō),若一個(gè)矢量決定于一個(gè)(純量)變數(shù),我們就把它叫做變量的矢函數(shù)矢函數(shù),rtt寫(xiě)成。)(tr在標(biāo)架中,曲線的(分量式)參數(shù)矢方程為:][321eeeO??332211)()()()(eeerrtxtxtxt????2矢函數(shù)的導(dǎo)矢與曲線的切線矢函數(shù)的導(dǎo)矢與曲線的切線某矢函數(shù)在某點(diǎn)連續(xù)的充要條件是其各分量在該點(diǎn)都連續(xù)。若矢函數(shù)332211)()()()(eeertxtxtxt???在t0
2、連續(xù),則其導(dǎo)矢為30320210100)()()()()(eeerrtxtxtxttdtdt????????導(dǎo)矢函數(shù)332211)()()()(eeertxtxtxt??????有時(shí)也簡(jiǎn)稱為導(dǎo)矢導(dǎo)矢。設(shè)21)(tttt????,:rr為任意空間曲線。若矢函數(shù)在閉節(jié)里每一個(gè)t值連續(xù),則曲線成為連續(xù)曲線連續(xù)曲線。][21tt?導(dǎo)矢的幾何意義:保證曲線在t0值對(duì)應(yīng)點(diǎn)的切線存在而且代表這條0)(0??tr?)(0tr?切線的方向。就叫做在該點(diǎn)的
3、一個(gè)切(線)矢(量)。)(0tr??若在閉節(jié)里,而且連續(xù),則的切線隨著切點(diǎn)的移動(dòng)而連續(xù)變動(dòng)位置,][21tt0)(??tr?這樣的曲線叫做光滑曲線光滑曲線。矢函數(shù)的微分,dttd)(rr??)(tdtdrr??這個(gè)定義在形式上和純量函數(shù)一樣。若,,是含純量變數(shù)t的矢函數(shù),?為t的純量函數(shù),則1r2r3rrrr???????)(dtd9,即1)()(221lim????sPPr122?dsdr若在度量弧長(zhǎng)始點(diǎn)P0,參數(shù),則0tt?dtts
4、tt???0)(r或即dtxxxstt???????0232221這就是弧長(zhǎng)s和t參數(shù)的關(guān)系。引進(jìn)弧長(zhǎng)作為參數(shù),是幺矢。用“.”表示對(duì)于弧長(zhǎng)的微導(dǎo),并用表示幺矢:dsdrαdsdrdsdrrα???于是是沿切線上的一個(gè)幺矢,稱為的幺切矢幺切矢。α??4曲率曲率曲線在它上面的一點(diǎn)P處的曲率曲率是表示它在P點(diǎn)鄰近的彎曲程度的一個(gè)幾何量。?設(shè)P0為上任意固定點(diǎn),P為上在P0鄰近的一點(diǎn),它們依次對(duì)應(yīng)于弧長(zhǎng)參數(shù)值??和,設(shè)在P0,P的切線之間的角
5、是,我們規(guī)定曲線在P0的曲0sss??0?)0(??????率為rααα????????????????????dsdsssssPPlimlimlim000???對(duì)于平面曲線23212212223222121211)(?????????????????????????????dxdxdxxdxxxxxxr?5曲線論的基本公式曲線論的基本公式.撓率撓率由于切矢是幺矢,對(duì)于弧長(zhǎng)s微導(dǎo),就得ααααα?????0若在切點(diǎn)P0,曲率,就沿一條法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 矢量運(yùn)算
- 代數(shù)基礎(chǔ)運(yùn)算
- 代數(shù)運(yùn)算的DNA實(shí)現(xiàn).pdf
- [學(xué)習(xí)]復(fù)數(shù)的代數(shù)形式與運(yùn)算
- 信號(hào)的基本運(yùn)算
- 張量運(yùn)算的組合和代數(shù).pdf
- 代數(shù)式的概念和運(yùn)算
- 常用的一些矢量運(yùn)算公式
- 集合的基本運(yùn)算教案
- 集合的基本運(yùn)算-教案
- 集合的基本運(yùn)算10
- 集合的基本運(yùn)算1
- 集合的基本運(yùn)算4
- 集合的基本運(yùn)算2
- c語(yǔ)言-關(guān)系運(yùn)算及關(guān)系代數(shù)
- [學(xué)習(xí)]復(fù)數(shù)代數(shù)形式的乘除運(yùn)算優(yōu)秀公開(kāi)
- 實(shí)驗(yàn)1矩陣的基本運(yùn)算
- 二輪考復(fù)習(xí)專題-代數(shù)運(yùn)算
- 極大加代數(shù)的對(duì)稱代數(shù)S上互補(bǔ)基本矩陣.pdf
- 集合的基本運(yùn)算學(xué)案1
評(píng)論
0/150
提交評(píng)論