版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 原文:</b></p><p> A proportional–integral–derivative controller (PID controller) is a generic .control loop feedback mechanism widely used in industrial control systems. A PID contro
2、ller attempts to correct the error between a measured process variable and a desired setpoint by calculating and then outputting a corrective action that can adjust the process accordingly.</p><p> The PID
3、controller calculation (algorithm) involves three separate parameters; the Proportional, the Integral and Derivative values. The Proportional value determines the reaction to the current error, the Integral determines th
4、e reaction based on the sum of recent errors and the Derivative determines the reaction to the rate at which the error has been changing. The weightedsum of these three actions is used to adjust the process via a control
5、 element such as the position of a control valve or </p><p> Some applications may require using only one or two modes to provide the appropriate system control. This is achieved by setting the gain of unde
6、sired control outputs to zero. A PID controller will be called a PI, PD, P or I controller in the absence of the respective control actions. PI controllers are particularly common, since derivative action is very sensiti
7、ve to measurement noise, and the absence of an integral value may prevent the system from reaching its target value due to the control </p><p> Note: Due to the diversity of the field of control theory and
8、application, many naming conventions for the relevant variables are in common use.</p><p> 1.Control loop basics</p><p> A familiar example of a control loop is the action taken to keep one
9、9;s shower water at the ideal temperature, which typically involves the mixing of two process streams, cold and hot water. The person feels the water to estimate its temperature. Based on this </p><p> meas
10、urement they perform a control action: use the cold water tap to adjust the process. The person would repeat this input-output control loop, adjusting the hot water flow until the process temperature stabilized at the de
11、sired value.</p><p> Feeling the water temperature is taking a measurement of the process value or process variable (PV). The desired temperature is called the setpoint (SP). The output from the controller
12、and input to the process (the tap position) is called the manipulated variable (MV). The difference between the measurement and the setpoint is the error (e), too hot or too cold and by how much.As a controller, one deci
13、des roughly how much to change the tap position (MV) after one determines the temperature (PV),</p><p> If a controller starts from a stable state at zero error (PV = SP), then further changes by the contro
14、ller will be in response to changes in other measured or unmeasured inputs to the process that impact on the process, and hence on the PV. Variables that impact on the process other than the MV are known as disturbances
15、and generally controllers are used to reject disturbances and/or implement setpoint changes. Changes in feed water temperature constitute a disturbance to the shower process.</p><p> In theory, a controller
16、 can be used to control any process which has a measurable output (PV), a known ideal value for that output (SP) and an input to the process (MV) that will affect the relevant PV. Controllers are used in industry to regu
17、late temperature, </p><p> pressure, flow rate, chemical composition, speed and practically every other variable for which a measurement exists. Automobile cruise control is an example of a process which ut
18、ilizes automated control.</p><p> Due to their long history, simplicity, well grounded theory and simple setup and maintenance requirements, PID controllers are the controllers of choice for many of these a
19、pplications.</p><p> While PID controllers are applicable to many control problems, they can perform poorly in some applications.PID controllers, when used alone, can give poor performance when the PID loop
20、 gains must be reduced so that the control system does not overshoot, oscillate or "hunt" about the control setpoint value. The control system performance can be improved by combining the feedback (or closed-lo
21、op) control of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (suc</p><p> For example, in most motion control systems, in order to accelerate a mechanical load under
22、control, more force or torque is required from the prime mover, motor, or actuator. If a velocity loop PID controller is being used to control the speed of the load and command the force or torque being applied by the pr
23、ime mover, then it is beneficial to take the instantaneous acceleration desired for the load, scale that value appropriately and add it to the output of the PID velocity loop controller. T</p><p> Another p
24、roblem faced with PID controllers is that they are linear. Thus, performance of PID controllers in non-linear systems (such as HVAC systems) is variable. </p><p> Along with the development of Fuzzy Mathema
25、tics, control engineers gradually pay much attention to the idea of Fuzzy Control, thus promoting the invention of fuzzy controllers. However, simple fuzzy controller has its own defect, where control effect is quite coa
26、rse and the control precision can not reach the expected level. Therefore, the Fuzzy Adaptive PID Controller is created by taking advantage of the superiority of PID Controller and Fuzzy Controller. Taken this controller
27、 in use, the corr</p><p> Meanwhile,the design method and general steps are introduced of the Parameter self-setting Fuzzy PID Controller. Eventually, the Fuzzy Inference Systems Toolbox and SIMULINK toolbo
28、x are used to simulate Control System. The results of the simulation show that Self-organizing Fuzzy Control System can get a better effect than the Classical PID controlled evidently.</p><p> Keywords: Cl
29、assic PID control; Fuzzy Control; Parameters tuning; the Fuzzy Adaptive PID Controller; MATLAB simulation</p><p><b> 譯文:</b></p><p> 比例積分微分控制器(PID調(diào)節(jié)器)是一個控制環(huán),廣泛地應(yīng)用于工業(yè)控制系統(tǒng)里的反饋機制。
30、PID控制器通過調(diào)節(jié)給定值與測量值之間的偏差,給出正確的調(diào)整,從而有規(guī)律地糾正控制過程。</p><p> PID控制器算法涉及到三個部分:比例,積分,微分。比例控制是對當(dāng)前偏差的反應(yīng),積分控制是基于新近錯誤總數(shù)的反應(yīng),而微分控制則是基于錯誤變化率的反應(yīng)。這三種控制的結(jié)合可用來調(diào)節(jié)過程系統(tǒng),例如調(diào)節(jié)閥的位置,或者加熱系統(tǒng)的電源調(diào)節(jié)。根據(jù)具體的工藝要求,通過PID控制器的參數(shù)整定,從而提供調(diào)節(jié)作用??刂破鞯捻憫?yīng)可
31、以被認為是對系統(tǒng)偏差的響應(yīng)。注意一點的是,PID算法不一定就是系統(tǒng)或系統(tǒng)穩(wěn)定性的最佳控制。</p><p> 一些應(yīng)用可能只需要運用一到兩種方法來提供適當(dāng)?shù)南到y(tǒng)控制。這是通過把不想要的控制輸出置零取得。在控制系統(tǒng)中存在P,PI,PD,PID調(diào)節(jié)器。PI調(diào)節(jié)器很普遍,因為微分控制對測量噪音非常敏感。積分作用的缺乏可以防止系統(tǒng)根據(jù)控制目標而達到它的目標值。</p><p> 注釋:由于控制
32、理論和應(yīng)用領(lǐng)域的差異,很多相關(guān)變量的命名約定是常用的。</p><p><b> 控制環(huán)基礎(chǔ) </b></p><p> 一個關(guān)于控制環(huán)類似的例子就是保持水在理想溫度,涉及到兩個過程,冷、熱水的混合。人可以憑觸覺估測水的溫度。基于此他們設(shè)計一個控制行為:用冷水龍頭調(diào)整過程。重復(fù)這個過程,調(diào)節(jié)熱水流直到溫度處于期望的穩(wěn)定值。</p><p>
33、 感覺水溫就是對過程值或變量的測量。期望得到的溫度稱為給定值??刂破鞯妮敵鰧ο蠛瓦^程的輸入對象稱為控制參數(shù)。測量值與給定值之間的差就是偏差值,太高、太低或正常。作為一個控制器,在確定溫度給定值后,就可以粗略決定改變閥門位置多少,以及怎樣改變偏差值。首次估計即是PID控制器的比例度的確定。當(dāng)它幾乎正確時,PID控制器的積分作用就是起著逐漸調(diào)整溫度的作用。微分作用就是根據(jù)水溫變得更熱、更冷,以及變化速率來決定什么時候、怎樣調(diào)整那些閥門。
34、當(dāng)偏差小時而做了一個大變動,相當(dāng)于一個大的調(diào)整控制器,會導(dǎo)致超調(diào)。如果控制器反復(fù)進行大的變動并且反復(fù)越過給定值的改變,控制環(huán)將會不穩(wěn)定。輸出值將在期望值或一常量周圍擺動,甚至破壞系統(tǒng)穩(wěn)定性。人不會這樣做,因為我們是有智慧的控制人員,可以從歷史經(jīng)驗中學(xué)習(xí),但PID控制器沒有學(xué)習(xí)能力,必須正確的設(shè)定。為有效的控制系統(tǒng)選擇正確的參數(shù)被稱為整定控制器。</p><p> 如果控制器在零偏差從穩(wěn)定開始,然后進一步的變化將
35、導(dǎo)致其它一些影響過程的能測量、不能測量值的變化,并且作用于偏差值上。除主過程以外,其他的對擾動有影響的過程可以用來抑制擾動或?qū)崿F(xiàn)對目標值的改變。供給水溫的變化就構(gòu)成了對過程的一個擾動。</p><p> 理論上,控制器能用來控制可測量對象,以及可以影響偏差的輸出、輸入標準值的所有過程參數(shù)??刂破髟诠I(yè)中被用來調(diào)節(jié)溫度,壓力,流速,化學(xué)組成,速度以及其它任何存在可測量的對象。汽車游覽控制就是一個自動化的過程控制的
36、例子。</p><p> 由于它們悠久的歷史,簡易,良好的理論基礎(chǔ)以及簡單的設(shè)置、維護要求,PID控制器被許多應(yīng)用實踐所采納。</p><p> 當(dāng)PID控制器適用于很多控制問題時,它在一些應(yīng)用過程中不好使用。當(dāng)單獨使用并且必須降低PID環(huán)路增益時,PID控制器會給出劣質(zhì)的控制性能。因此,控制系統(tǒng)不超調(diào)。在給定值附近擺動??刂葡到y(tǒng)可以通過結(jié)合PID控制器與前饋控制來進行改進。關(guān)于系統(tǒng)的
37、知識,可以用前饋和PID輸出來改進總的系統(tǒng)性能。單獨的前饋控制經(jīng)常能提供主要控制器輸出值的部分。PID控制器還能對在SP和PV的實際值之間的偏差作出反應(yīng)。因為前饋生產(chǎn)沒被過程反饋影響,它永遠不能引起控制系統(tǒng)擺動,且有助于改進系統(tǒng)的穩(wěn)定性。</p><p> 例如,在大多數(shù)運動控制系統(tǒng)中,為了在控制一機械負荷,需要更多的來自電動機、發(fā)動機或作動器的力量或者力矩。如果一速度PID控制器被用來控制負荷的速度,并驅(qū)動被
38、原動力使用的力或者力矩,它有利于賦予負荷所需的加速度,恰當(dāng)估價并且給PID速度環(huán)控制器的輸出添加給定值。這表明每當(dāng)負荷被加速或者被降速時,成比例的力量從那些原動力產(chǎn)生而不受反饋值影響任何導(dǎo)致輸出增加或減少的因素,為了降低給定值與反饋值的差值。同時工作時,結(jié)合的開環(huán)前饋控制器和封閉環(huán)PID控制器能提供一個更敏感、可靠的控制系統(tǒng)。</p><p> 面臨PID 控制器的另一個問題是他們是在線的。 因此,在非線性系統(tǒng)
39、(象空調(diào)系統(tǒng)那樣)內(nèi)的PID 控制器的工作是易變的。</p><p> 隨著模糊數(shù)學(xué)的發(fā)展,模糊控制的思想逐漸得到控制工程師們的重視,各種模糊控制器也應(yīng)運而生。而單純的模糊控制器有其自身的缺陷—控制效果很粗糙、控制精度無法達到預(yù)期標準。但利用傳統(tǒng)的PID控制器和模糊控制器結(jié)合形成的模糊自適應(yīng)的PID控制器可以彌補其缺陷;它將系統(tǒng)對應(yīng)的誤差和誤差變化率反饋給模糊控制器進而確定相關(guān)參數(shù),保證系統(tǒng)工作在最佳狀態(tài),實現(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- pid控制器外文翻譯
- 微控制器外文翻譯
- 外文翻譯--基于微控制器的光控制器
- 外文翻譯--基于微控制器的光控制器
- 網(wǎng)絡(luò)控制系統(tǒng)的比例積分輸出反饋控制器設(shè)計.pdf
- 外文翻譯--基于微控制器的光控制器(英文)
- 外文翻譯--基于微控制器的光控制器(譯文)
- 外文翻譯--基于微控制器的光控制器(英文).pdf
- 基于最優(yōu)比例積分的電力彈簧控制器設(shè)計與應(yīng)用.pdf
- 外文翻譯--基于微控制器的光控制器(譯文).doc
- 外文翻譯--基于微控制器的光控制器(譯文).doc
- 外文翻譯--基于微控制器的光控制器(英文).pdf
- 外文文獻翻譯----微控制器
- gpib usb總線控制器【外文翻譯】
- 外文翻譯---溫度控制和pid控制器簡介
- 外文翻譯--溫度控制簡介和pid控制器
- 外文翻譯----溫度控制簡介和pid控制器
- 外文翻譯--溫度控制簡介和pid控制器
- pid控制器畢業(yè)設(shè)計外文翻譯
- 可編程邏輯控制器 外文翻譯
評論
0/150
提交評論