版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 附錄1 外文資料翻譯</p><p><b> A1.1 譯文</b></p><p> 鐵路系統(tǒng)接觸網(wǎng)中集電板碳合金的含量對(duì)其與接觸線磨影響</p><p> 本文主要是對(duì)發(fā)生在接觸網(wǎng)中接觸線和集電板之間磨損情況的研究,它們之間的磨損由機(jī)械和電氣兩個(gè)方面引起。這方面的研究對(duì)設(shè)施的維修成本和受電弓與接觸線的工作壽命有
2、著密切的關(guān)系。由于接觸網(wǎng)中維修機(jī)車和基礎(chǔ)設(shè)施方面的重要性,在過(guò)去幾十年世界上一直對(duì)這個(gè)問(wèn)題十分重視。</p><p> 為了探討機(jī)械和電氣兩方面引起的接觸線和滑板之間的磨損,在米蘭設(shè)計(jì)并安裝了一種新型的測(cè)試裝置。一系列的實(shí)驗(yàn)測(cè)試已經(jīng)完成,其中涉及了多種材料的集電板和在不同轉(zhuǎn)速與電流強(qiáng)度的接觸條件。</p><p> 研究中涉及到了3kV直流線路所需要的各種不同結(jié)構(gòu)的集電板。研究中發(fā)現(xiàn)集
3、電板中的銅和碳合金的不同含量對(duì)滑板與接觸線的磨損有著很大的影響。</p><p><b> 前言</b></p><p> 高速鐵路運(yùn)輸系統(tǒng)的發(fā)展意味著對(duì)電能需求的增加,但是從目前通過(guò)受電弓在架空線(接觸網(wǎng))獲取電能的水平來(lái)看,就需要受電弓集電板具有較高的工作性能。這個(gè)問(wèn)題不僅僅由于高速列車的原因,而且與線路的容量和貨運(yùn)列車的長(zhǎng)期運(yùn)行有關(guān)。意大利鐵路系統(tǒng)決定把所有
4、的銅材料的集電板換為Kasperowski型,隨后又把碳合金用于集電板,這些在線路材料方面的改進(jìn)都是對(duì)3kv直流線路的挑戰(zhàn)。當(dāng)接觸線上的電流達(dá)到1000A以上時(shí)就會(huì)由于產(chǎn)生的機(jī)械熱加重受電弓集電板的損壞。眾所周知,接觸線和受電弓集電板的磨損主要取決于以下幾個(gè)因素:接觸線材料的類型,運(yùn)行條件(滑動(dòng)速度 接觸力 電流強(qiáng)度等)以及它們之間是否發(fā)出電火花和電弧等。</p><p> 在Klapas et al. 和 B
5、ecker的的著作中,對(duì)以上提到的決定線路磨損程度的各種原因以及它們之間的相互影響都有說(shuō)明?;诤?jiǎn)單方便起見(jiàn),在集電板和接觸線之間產(chǎn)生的磨損可以分為兩種:一種是由于機(jī)械摩擦引起的磨損,另外一種是由于電火花引起的磨損,這兩者相互作用并影響。特別是越來(lái)越多的磨損不僅和線路的電流強(qiáng)度有關(guān),而且和弓網(wǎng)之間的接觸壓力有關(guān),同時(shí)和火花強(qiáng)度有關(guān)的磨損也隨著接觸壓力的增大而加重。再者,高電流在某些情況下可以通過(guò)所謂的當(dāng)前潤(rùn)滑作用減少整體磨損。并且速度的
6、增加并不會(huì)總是造成磨損的加重,甚者在一些特殊的情形下由于熱力條件增加引起的摩擦反而會(huì)減少磨損。戴安娜和她的同事已經(jīng)報(bào)道了有關(guān)這些內(nèi)容的簡(jiǎn)要介紹。</p><p> 本文將對(duì)以上提及到的幾個(gè)方面通過(guò)測(cè)試裝配實(shí)驗(yàn)進(jìn)行詳細(xì)研究。人們考慮了幾種集電板:所有的銅材型,包括外包銅的碳合金(Kasperowski型)和普通碳合金。所有的集電板的設(shè)計(jì)都是基于3kv的直流線路。值得一提的是它的滑動(dòng)速度相當(dāng)快(可達(dá)200km/h)
7、,并且電流強(qiáng)度也高于其他研究成果,直流電可達(dá)1000A。</p><p> 以下對(duì)一些設(shè)備進(jìn)行了試驗(yàn)并對(duì)結(jié)果進(jìn)行了分析。在試驗(yàn)中把磨損率和嚴(yán)格實(shí)驗(yàn)的程度相關(guān)連。它們的關(guān)系基于耗散功率的假設(shè),從而說(shuō)明機(jī)械和電氣兩個(gè)方面的磨損的實(shí)質(zhì)。</p><p><b> 實(shí)驗(yàn)裝配架概況</b></p><p> 這里要闡明的是試驗(yàn)裝配架的主要特點(diǎn)。該設(shè)
8、備可以測(cè)試在時(shí)速達(dá)220km/h并通過(guò)1200A直流電或500A交流電的線路上受電弓的運(yùn)行情況。試驗(yàn)臺(tái)的主要組成部分是一個(gè)直徑4m的磁盤,它可以290rpm的最高速度繞垂直軸線旋轉(zhuǎn)。</p><p> 接觸線安裝在磁盤外圓周部位并朝向磁盤的徑向方向,并且使滑動(dòng)面水平的朝向受電弓的頭部。通過(guò)控制90千瓦直流電機(jī)由傳送帶帶動(dòng)磁盤轉(zhuǎn)動(dòng)。受電弓被懸放在一個(gè)平臺(tái)上面,并且它隨一個(gè)三角波信號(hào)沿磁盤徑向方向移動(dòng)。為了顯示試驗(yàn)
9、中對(duì)接觸線的具體作用需要對(duì)磁盤的旋轉(zhuǎn)進(jìn)行同步測(cè)速。試驗(yàn)中采用液壓驅(qū)動(dòng)的方式在接觸線上產(chǎn)生平均壓力。為了在試驗(yàn)中模擬實(shí)際列車運(yùn)行而產(chǎn)生的空氣對(duì)流,要用管子使接觸區(qū)的空氣流動(dòng)(常溫下)。</p><p> 接觸線是由一組鋼鋁絞線組成。試驗(yàn)架創(chuàng)建初始階段進(jìn)行的初步實(shí)驗(yàn)表明,如果接觸線在磁盤上受到擠壓時(shí),那在集電板上將產(chǎn)生過(guò)大的垂直加速度(可達(dá)200m/s2)。這種狀況將使集電板產(chǎn)生異常的動(dòng)態(tài)特性,這將給滑板帶來(lái)嚴(yán)重的
10、磨損損失,并在實(shí)際運(yùn)行中出現(xiàn)嚴(yán)重的刮弓事故。</p><p> 試驗(yàn)中的電路測(cè)試平臺(tái)是由電容器饋電輸出和一個(gè)絕緣柵雙極晶體管構(gòu)成三相全橋整流器組成的,從而由逆變器控制負(fù)載電流的輸出電感。將逆變器的開關(guān)頻率適當(dāng)提高,則可以降低電流中的諧波含量。該逆變器可以仿真各種形式的電流(歐洲地區(qū)):直流電可達(dá)1kA,0.5kA—16.6Hz和0.5kA—50Hz三種。</p><p> 為了平衡各有
11、關(guān)量,采取了適當(dāng)?shù)臏y(cè)量措施。通過(guò)放置在受電弓回錨的儀器可測(cè)量線路傳輸電流。對(duì)接觸滑動(dòng)區(qū)和轉(zhuǎn)動(dòng)磁盤底部之間的壓降的測(cè)量時(shí),即假定的接觸線和滑板之間的壓降,可允許適當(dāng)?shù)木€路損失。等效的接觸電阻可認(rèn)為是兩者之間的壓降和電流強(qiáng)度之比。在計(jì)算等效的接觸電阻時(shí),要考慮到兩者實(shí)際接觸面積的影響。</p><p><b> 結(jié)論</b></p><p> 集電板和接觸線材料的磨損
12、情況已經(jīng)在實(shí)驗(yàn)室通過(guò)仿真高速列車運(yùn)行環(huán)境完成了具體的實(shí)驗(yàn)。在線路傳輸1000A直流電并有時(shí)速達(dá)200 km/h列車運(yùn)行的仿真工作環(huán)境條件下,對(duì)不同材料的集電板進(jìn)行了測(cè)試。經(jīng)過(guò)詳細(xì)研究弄清楚了滑板中碳合金的含量在其與接觸線之間的磨損中所起的作用。</p><p> 滑板的磨損與其單位長(zhǎng)度的總耗散功率有關(guān)。其中幾中磨損的程度與碳合金和銅的含量有關(guān),同時(shí)也發(fā)現(xiàn)以銅為主要材料的滑板由于摩擦力的原因而產(chǎn)生的磨損比較嚴(yán)重;
13、以碳合金為主要材料的滑板則可以降低在電力線路上由于焦耳效應(yīng)而產(chǎn)生的磨損,這是由于它的電阻比較高的緣故。</p><p> 以銅為主要材料的集電板的磨損程度要比含碳合金的集電板高大約四倍。這需要在一種有理想光滑面的接觸線上檢驗(yàn),使得不造成在碳材料上的嚴(yán)重?fù)p失。在滑動(dòng)過(guò)度階段中,碳滑板卻要比銅的滑板受到更嚴(yán)重的磨損,而且在這個(gè)過(guò)程中還會(huì)在接觸線和銅基之間造成擦痕。</p><p> 當(dāng)接觸
14、線單位長(zhǎng)度的無(wú)功功率不一致時(shí),在兩區(qū)域就會(huì)產(chǎn)生不同的磨損率。從這個(gè)方面來(lái)看以銅為基本材料的接觸滑板具有高的磨損性能,而以碳為基本材料的接觸滑板則屬于低耐磨區(qū)。</p><p><b> A1.2 原文</b></p><p> Effect of metallised carbon content of collector strip on the wear of
15、 contact wire–collector strip pair in railway systems</p><p> Among the topics related to the interaction between the contact wire of the overhead line and the collector strip, the wear that takes place at
16、the contact interface, depending on both electrical and mechanical quantities, represents an important aspect of maintenance costs, affecting the mean lifetime of collectors and contact line duration. Due to its importan
17、ce in the global maintenance of both rolling stock and infrastructure, this topic deserved the attention of several regulations in the l</p><p> In order to investigate the effects of electro-mechanical wea
18、r on both contact wire and contact strip, a new test equipment has been designed and installed at Politecnico di Milano. A series of tests have been performed, involving different kinds of collector strip materials and c
19、ontact conditions, tested at varying speeds and current intensities.</p><p> This investigation concerned different collector strip con?gurations intended for 3 kV D.C. lines. The combination of different c
20、ontents of copper and metallised carbon in the collector has been found to in?uence the wear rate of both collector strip and contact wire. </p><p> key words: contact strip; contact wire; wear; friction; m
21、etallised carbon</p><p> INTRODUCTION</p><p> The development of higher speeds in railway transportation systems demands an increase of the required electrical power, and therefore of the leve
22、l current to be collected by the pantograph from the overhead line (catenary), calling for higher performance from collector strips. This problem is not limited to high-speed trains but also concerns high-capacity lines
23、and long-freight trains. The decision of Italian railways to move from all copper collector strips to the Kasperowski type, and subseq</p><p> The previously mentioned factors mutually interact in determini
24、ng the level of wear, as shown in Klapas et al. and Becker et al., so that multidimensional maps can be de?ned. For the sake of convenience, wear at the collector–contact wire interface could be divided into mechanically
25、 and electrically caused contributions, even though it is clear that they are strongly correlated and mutually in?uencing. In particular, the increasing wear due to current intensity depends also on the level of conta<
26、;/p><p> This paper presents the results of an investigation carried out by means of a test rig on some of the previously mentioned aspects. Several kinds of collector strips have been considered: all copper,
27、metallised carbon with an external envelope of copper (Kasperowski type) and metallised carbon. All the strips are designed for 3 kV D.C. lines. It is worth mentioning that the sliding speeds are quite high (up to 200 km
28、/h), and the currents are higher than in other published research, being up to 1</p><p> Following a description of the test rig, the main experimental results are presented. A correlation between the wear
29、of collector strips and contact wire with the operating conditions is reported. A correlation between wear rates and indexes of the test severity is also proposed. The relationship is based on the assumption of dependenc
30、e from the dissipated power, and on the wear of both mechanical and electrical nature.</p><p> TEST RIG OVERVIEW</p><p> The main features of the test rig, are herein recalled. The equipment e
31、nables testing of a collector to be performed at speeds up to 220 km/h under the passage of electrical current up to 1200 A D.C. and 500 A A.C. The main element of the test bench is a 4-m-diameter disc, rotating at a max
32、imum speed of 290 rpm around a vertical axis.</p><p> A contact wire is ?tted on the outer circumference, with the sliding surface horizontally oriented towards the collector head of the pantograph, which i
33、s placed under the disc in a radial direction. The disc is moved by a controlled 90 kW A.C. motor through a transmission belt. The collector is elastically mounted on a suspension placed on a platform, which moves along
34、the radial direction of the disc following a triangular wave signal. The period of the movement is synchronized with the test sp</p><p> A pipe is used to blow air (at environment temperature) on the contac
35、t zone in order to reproduce the convective heat transfer due to the air ?ow around real moving vehicles.</p><p> The contact wire is elastically suspended by means of a series of aluminium strands. Prelimi
36、nary tests carried out during the set-up stage of the test rig put into evidence that the contact strip was subjected to excessive levels of vertical acceleration (up to 200 m/s2) if the contact wire is rigidly ?xed on t
37、he disc. This condition leads to unrealistic dynamics of the contact strip, characterised by an unacceptable level of contact losses leading to more severe arching phenomena than in real o</p><p> The elect
38、ric circuit of the test bench is made up of a three-phase full-bridge recti?er with capacitor output feeds and an Insulated Gate Bipolar Transistor (IGBT) inverter which controls the load current of the output inductor.
39、The commutation frequency of the inverter is suitably high to ensure low-current harmonic content. The inverter allows the emulation of all the currents of the European catenaries: up to 1 kA D.C. current, 0.5 kA–16.6 Hz
40、 and 0.5 kA–50 Hz.</p><p> A proper measurement set-up has been adopted in order to measure all relevant quantities. Transferred current is measured by means of an amperometer placed on the return cable fro
41、m the collector. The voltage drop measured between the sliding contact and the base of the rotating disc is assumedas an indicator of the voltage drop between the contact wire and contact strip, and allows to estimate th
42、e percentage of contact loss occurrence. The equivalent contact resistance is estimated as the ratio </p><p> CONCLUSIONS</p><p> The loss of collector strip and contact wire material has been
43、 evaluated in a laboratory test rig simulating the conditions of high-speed trains. Different types of collector strips were tested under working conditions of up to 200 km/h sliding speed and a current transfer of 1000
44、A D.C. The effect of the content of metallised carbon in the contact strip on the wear of both contact strips and contact wire was investigated.</p><p> The wear of the contact strips shows a correlation wi
45、th the total dissipated power divided by the longitudinal dimension of the contact strip. Several wear regions are found depending on the ratio between the content of copper and metallised carbon. This index also points
46、out that Cu-based contact strips seem to suffer more from increasing the frictional power. C-based contact strips seems to be less sensitive to an increase of electrical power due to the Joule effect, correlated to the h
47、igher r</p><p> The wear of the Cu-based collector strips is approximately four times higher than the wear of the all-carbon contact strip. This behaviour requires an ideal smooth surface of the contact wir
48、e, which does not cause signi?cant abrasion on the carbon. During a transition phase from an all-copper collector test to an all-carbon collector test, the all-carbon collector might undergo intense abrasive wear. This a
49、brasion is caused by asperities on the wire surface formed when worn against the Cu-based</p><p> contact strips.</p><p> The wear rate of the contact wire reveals two distinct regions when pl
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 接觸網(wǎng)課程設(shè)計(jì)---電氣化鐵路接觸網(wǎng)無(wú)交叉線岔的分析與設(shè)計(jì)
- 接觸網(wǎng)課程設(shè)計(jì)--電氣化鐵路接觸網(wǎng)無(wú)交叉線岔設(shè)計(jì)
- 接觸網(wǎng)畢業(yè)設(shè)計(jì)論文(外文翻譯)
- 接觸網(wǎng)課程設(shè)計(jì)(接觸網(wǎng)絕緣配合)
- 接觸網(wǎng)術(shù)語(yǔ)
- 高速鐵路接觸網(wǎng)檢修初探
- 接觸網(wǎng)工程課程設(shè)計(jì)--高速電氣化鐵路接觸網(wǎng)無(wú)交叉線岔的設(shè)計(jì)
- 接觸網(wǎng)腕臂系統(tǒng)
- 鐵路接觸網(wǎng)幾何參數(shù)測(cè)量系統(tǒng)的研究.pdf
- 接觸網(wǎng)的組成
- 接觸網(wǎng)課程設(shè)計(jì)---接觸網(wǎng)中心錨結(jié)的設(shè)計(jì)
- 接觸網(wǎng)課程設(shè)計(jì)--電氣化鐵路接觸網(wǎng)的絕緣配合的研究
- 接觸網(wǎng)課程設(shè)計(jì)--高速電氣化鐵路接觸網(wǎng)懸掛模式設(shè)計(jì)
- 接觸網(wǎng)課程設(shè)計(jì)--高速電氣化鐵路接觸網(wǎng)的控制參數(shù)設(shè)計(jì)
- 接觸網(wǎng)驗(yàn)收標(biāo)準(zhǔn)
- 接觸網(wǎng)課程設(shè)計(jì)--高速電氣化鐵路接觸網(wǎng)懸掛模式設(shè)計(jì)
- 接觸網(wǎng)系統(tǒng)可靠性初探及接觸線可靠度研究.pdf
- 接觸網(wǎng)硬點(diǎn)
- 接觸網(wǎng)習(xí)題-答案
- 接觸網(wǎng)課程設(shè)計(jì)--高速電氣化鐵路接觸網(wǎng)懸掛模式設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論