版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、語音活動(dòng)檢測是指在連續(xù)輸入的聲音信號中自動(dòng)地檢出語音存在時(shí)段的一種檢測技術(shù)。它是語音信號處理的一個(gè)重要環(huán)節(jié),在語音處理的多個(gè)研究領(lǐng)域中有著廣泛的應(yīng)用。近年來,隨著各種現(xiàn)實(shí)應(yīng)用服務(wù)對語音處理技術(shù)的需求日益增加,對新環(huán)境下的語音活動(dòng)檢測技術(shù)也提出新的挑戰(zhàn),這主要表現(xiàn)為非平穩(wěn)低信噪比環(huán)境下的魯棒語音活動(dòng)檢測問題,它是語音處理中的一個(gè)重要的亟待解決的熱點(diǎn)問題。近十余年來,雖然研究者們對此問題提出了許多檢測方法,并取得了長足進(jìn)步,但當(dāng)前所取得的成
2、果與實(shí)際的系統(tǒng)需求還有較大的距離。
語音活動(dòng)檢測,從處理問題的應(yīng)用環(huán)境上可分為噪聲類型已知且不變的限定環(huán)境,以及噪聲類型未知且變化的開放環(huán)境下的檢測方法。本文分別從檢測方法是否需要快速響應(yīng)兩個(gè)角度,對限定環(huán)境和開放環(huán)境下的語音活動(dòng)檢測進(jìn)行了研究,提出了一系列解決方法。論文的主要?jiǎng)?chuàng)新工作包括:
(1)提出了以信號稀疏表示為魯棒特征的語音活動(dòng)檢測方法。在噪聲類型不變的限定環(huán)境下,語音與環(huán)境噪聲在信號結(jié)構(gòu)上有著明顯的區(qū)別,
3、可用做語音∕非語音的鑒別特征。然而,在低信噪比環(huán)境下傳統(tǒng)的基于正交分解提取信號結(jié)構(gòu)信息的方法容易受噪聲干擾,從而使特征失去魯棒性。針對這一問題,本文提出使用基于原子字典稀疏分解的方法來獲取信號的結(jié)構(gòu)信息,將分解得到的信號稀疏表示作為語音∕非語音的鑒別特征用于語音活動(dòng)檢測。依據(jù)構(gòu)造字典所使用的先驗(yàn)知識(shí)的不同,將原子字典分為預(yù)構(gòu)建字典和學(xué)習(xí)字典,文中討論了在語音檢測問題中兩種字典的構(gòu)造方法,并分別提出了基于預(yù)構(gòu)建字典和學(xué)習(xí)字典下信號稀疏表示
4、的檢測方法。此外,本文還基于分層Bayesian模型從理論上論證了將稀疏表示作為特征應(yīng)用于信號檢測問題的合理性。實(shí)驗(yàn)表明,在低信噪比噪聲環(huán)境下信號的稀疏表示相比于傳統(tǒng)的離散傅立葉變換(discrete Fourier transform,DFT)系數(shù)具有更好的魯棒性,在語音活動(dòng)檢測中取得了更好的檢測性能。
(2)提出了基于信噪角特征的語音活動(dòng)檢測方法。針對噪聲類型未知且變化的開放噪聲環(huán)境,基于噪聲最小統(tǒng)計(jì)量追蹤提出了一種具有相
5、對穩(wěn)定性質(zhì)的信噪角特征用于語音活動(dòng)檢測。信噪角特征能夠快速適應(yīng)噪聲類型的變化,在不同類型的噪聲環(huán)境下具有相近的尾分布,這一性質(zhì)使得信噪角特征能夠適合開放環(huán)境下語音活動(dòng)檢測的需要,并可采用基于統(tǒng)計(jì)模型的方法進(jìn)行決策。針對有經(jīng)驗(yàn)數(shù)據(jù)的情況,本文還提出了兩種基于可區(qū)分訓(xùn)練加權(quán)的檢測方法,其中加權(quán)值通過經(jīng)驗(yàn)數(shù)據(jù)學(xué)習(xí)得到。實(shí)驗(yàn)表明,所提出的信噪角特征和檢測方法能夠有效地適應(yīng)開放環(huán)境下的語音活動(dòng)檢測任務(wù),并取得了較好的檢測性能。此外,實(shí)驗(yàn)結(jié)果還表明
6、:在有經(jīng)驗(yàn)數(shù)據(jù)的情況下,加權(quán)后的檢測方法可以明顯地提高檢測性能。
(3)提出了基于二層決策的多幀似然比檢測方法。語音活動(dòng)在連續(xù)的語音幀中存在著較強(qiáng)的相關(guān)性,本文將這種幀間相關(guān)性以隱馬爾可夫模型(hidden Markov model,HMM)建模,提出了基于HMM修正最大后驗(yàn)概率(maximum a posteriori,MAP)準(zhǔn)則的決策方法來對單幀語音進(jìn)行檢測。針對多語音幀檢測問題,以單幀語音檢測的似然比為研究對象,提出了
7、符號似然比檢測方法,并分析了檢測性能。結(jié)合上述所提出的單幀與多幀檢測方法,給出了二層決策的多幀似然比檢測方法。實(shí)驗(yàn)表明,相比于傳統(tǒng)的統(tǒng)計(jì)模型方法,本文所提出的方法都取得了更好的檢測結(jié)果。
(4)提出了基于核方法與Chernoff不等式的非參數(shù)語音活動(dòng)檢測方法。開放環(huán)境下噪聲的類型未知且變化,很難使用先驗(yàn)知識(shí)來選擇統(tǒng)計(jì)模型進(jìn)行決策。本文提出的非參數(shù)的檢測方法只使用信號的局部數(shù)據(jù),在再生核Hilbert空間中估計(jì)語音活動(dòng)出現(xiàn)的后驗(yàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高噪聲環(huán)境下語音活動(dòng)檢測技術(shù)的研究.pdf
- 非平穩(wěn)噪聲環(huán)境中的語音增強(qiáng)技術(shù)研究.pdf
- 復(fù)雜背景下低信噪比實(shí)時(shí)魯棒的弱小目標(biāo)自動(dòng)檢測技術(shù).pdf
- 非平穩(wěn)噪聲環(huán)境下的語音增強(qiáng)研究.pdf
- 噪聲環(huán)境下的魯棒語音識(shí)別研究.pdf
- 非平穩(wěn)噪聲環(huán)境下的語音增強(qiáng)算法研究.pdf
- 噪聲環(huán)境下基于MFCC的魯棒語音識(shí)別研究.pdf
- 低信噪比環(huán)境下語音端點(diǎn)檢測方法研究.pdf
- 高噪聲環(huán)境下語音檢測技術(shù)的研究.pdf
- 噪聲環(huán)境下的語音識(shí)別技術(shù)研究.pdf
- 基于HHT復(fù)雜環(huán)境下低信噪比語音檢測及增強(qiáng)方法研究.pdf
- 低信噪比環(huán)境下語音增強(qiáng)與激活檢測算法研究.pdf
- 低信噪比環(huán)境下語音信號端點(diǎn)檢測算法.pdf
- 低信噪比條件下的語音信號檢測.pdf
- 噪聲魯棒的語音情感識(shí)別研究.pdf
- 非平穩(wěn)環(huán)境下的語音增強(qiáng)算法研究.pdf
- 低信噪比下的語音端點(diǎn)檢測技術(shù)的研究.pdf
- 低信噪比環(huán)境下語音可懂度增強(qiáng)算法研究.pdf
- 噪聲環(huán)境下漢語連續(xù)語音識(shí)別技術(shù)研究.pdf
- 高噪聲環(huán)境下語音激活檢測技術(shù)的研究.pdf
評論
0/150
提交評論