版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 中文3420字</b></p><p><b> 附錄A 外文資料</b></p><p> Power system load forecasting methods and characteristics of</p><p> Abstract: The load forecast
2、ing in power system planning and operation play an important role, with obvious economic benefits, in essence, the electricity load forecasting market demand forecast. In this paper, a systematic description and analysis
3、 of a variety of load forecasting methods and characteristics and that good load forecasting for power system has become an important means of modern management.</p><p> Keywords: power system load forecas
4、ting electricity market construction planning</p><p> 1. Introduction</p><p> Load forecasting demand for electricity from a known starting to consider the political, economic, climate and o
5、ther related factors, the future demand for electricity to make predictions. Load forecast includes two aspects: on the future demand (power) projections and future electricity consumption (energy) forecast. Electricity
6、demand projections decision generation, transmission and distribution system, the size of new capacity; power generating equipment determine the type of prediction (su</p><p> Load forecasting purposes is
7、to provide load conditions and the level of development, while identifying the various supply areas, each year planning for the power consumption for maximum power load and the load of planning the overall level of deve
8、lopment of each plan year to determine the load composition.</p><p> 2. load forecasting methods and characteristics of</p><p> 2.1 Unit Consumption Act</p><p> Output of product
9、s in accordance with national arrangements, planning and electricity intensity value to determine electricity demand. Sub-Unit Consumption Act; Product Unit Consumption; and the value of Unit Consumption Act; two. the pr
10、ojection of load before the key is to determine the appropriate value of the product unit consumption or unit consumption. Judging from China's actual situation, the general rule is the product unit consumption incre
11、ased year by year, the output value unit consum</p><p> 2.2 Trend extrapolation</p><p> When the power load in accordance with time-varying present some kind of upward or downward trend, and n
12、o obvious seasonal fluctuations, but also to find a suitable function curve to reflect this change in trend, you can use the time t as independent variables, timing value of y for the dependent variable to establish the
13、trend model y = f (t). When the reason to believe that this trend will extend to the future, we assigned the value of the variable t need to, you can get the corresponding time</p><p> Application of the tr
14、end extrapolation method has two assumptions: (1) assuming there is no step change in load; (2)assume that the development of load factors also determine the future development of load and its condition is unchanged or c
15、hanged little. Select the appropriate trend model is the application of the trend extrapolation an important part of pattern recognition method and finite difference method is to select the trend model are two basic ways
16、.</p><p> A linear trend extrapolation forecasting method, the logarithmic trend forecasting method, quadratic curve trend forecasting method, exponential curve trend forecasting method, growth curve of the
17、 trend prediction method. Trend extrapolation method's advantages are: only need to historical data, the amount of data required for less. The disadvantage is that: If a change in load will cause large errors.</p&
18、gt;<p> 2.3 Elastic Coefficient Method </p><p> Elasticity coefficient is the average growth rate of electricity consumption to GDP ratio of between, according to the gross domestic product growth r
19、ate of coefficient of elasticity to be planning with the end of the total electricity consumption. Modulus of elasticity law is determined on power development from a macro with the relative speed of national economic de
20、velopment, which is a measure of national economic development and an important parameter in electricity demand. The advantages of</p><p> 2.4 Regression Analysis Method </p><p> Regression es
21、timate is based on past history of load data, build up a mathematical analysis of the mathematical model. Of mathematical statistics, regression analysis of the variables in statistical analysis of observational data in
22、order to achieve load to predict the future. Regression model with a linear regression, multiple linear regression, nonlinear regression and other regression prediction models. Among them, linear regression for the mediu
23、m-term load forecast. Advantages are: a higher </p><p> 2.5 Time Series Analysis </p><p> The load is on the basis of historical data, trying to build a mathematical model, using this mathemat
24、ical model to describe the power load on the one hand this random variable of statistical regularity of the change process; the other hand, the mathematical model based on the re-establishment of the mathematical express
25、ion of load forecasting type, to predict the future load. Time series are mainly autoregressive AR (p), moving average MA (q) and self-regression and moving average ARMA (p, q) a</p><p> 2.6 Gray model meth
26、od </p><p> Gray prediction is a kind of a system containing uncertain factors to predict approach. Gray system theory based on the gray forecasting techniques may be limited circumstances in the data to id
27、entify the role of law within a certain period, the establishment of load forecasting models. Is divided into ordinary gray system model and optimization model for two kinds of gray. </p><p> Ordinary gray
28、prediction model is an exponential growth model, when the electric load in strict accordance with exponentially growing, this method has high accuracy and required less sample data to calculate simple and testable etc.;
29、drawback is that for a change in volatility The power load, the prediction error larger, does not meet actual needs. And the gray model optimization can have ups and downs of the original data sequence transformed into i
30、ncreased exponentially increasing regularity c</p><p> 2.7 Delphi Method </p><p> The Delphi method is based on the special knowledge of direct experience, research problems of judgment, a met
31、hod for prediction of, also called experts investigation. Delphi method has feedback, anonymity and statistical characteristics. Delphi method advantage is: (1) can accelerate prediction speed and save prediction cost; (
32、2)can get different but valuable ideas and opinions; (3)suitable for long-term forecasts in historical data, insufficient or unpredictable factors is particularly applica</p><p> 2.8 Expert System Approach
33、</p><p> Expert system prediction is stored in the database over the past few years, even decades, the hourly load and weather data analysis, which brings together experienced staff knowledge load forecasti
34、ng, extract the relevant rules, according to certain rules, load prediction. Practice has proved that accurate load forecasting requires not only high-tech support, but also need to reconcile the experience and wisdom of
35、 mankind itself. Therefore, you need expert systems such technologies. Expert syste</p><p> 2.9 Neural Network Method </p><p> Neural network (ANN, Artificial Neural Network) forecasting techn
36、iques to mimic the human brain to do intelligent processing, a large number of non-structural, non-deterministic laws of adaptive function. ANN used in short-term load forecasting and long-term load forecast than that ap
37、plied to be more appropriate. Because short-term load changes can be regarded as a stationary random process. And long-term load forecasting may be due to political, economic and other major turning point leading to</
38、p><p> 2.10 Optimum Combination Forecasting Method </p><p> Optimal combination has two meanings: First, several forecasting methods from the results obtained by selecting the appropriate weight
39、in the weighted average; 2 refers to the comparison of several prediction methods, choose the best or the degree of preparation and the standard deviation of the smallest prediction model forecast. For the combined forec
40、asting method must also noted that the combined forecast is a single forecasting model can not completely correct to describe the changes of the </p><p> 2.11 Wavelet analysis and forecasting techniques <
41、;/p><p> Wavelet analysis is a time-domain - frequency domain analysis method, it is in the time domain and frequency domain at the same time has good localization properties, and can automatically adjust acco
42、rding to the signal sampling frequency of high and low density, it is easy to capture and analysis of weak signals and signal, images of any small parts. The advantage is: Can the different frequency components gradually
43、 refined using a sampling step, which can be gathered in any of the details of t</p><p> 3. Conclusion </p><p> Load forecasting is the electric power system scheduling, real-time control, ope
44、ration plan and development planning, the premise is a grid dispatching departments and planning departments must have the basic information. Improve load forecasting technology level, be helpful for program management,
45、reasonable arrangement of the electricity grid operation mode for the maintenance plan and the crew, to section coal, fuel-efficient and reduce generating cost, be helpful for formulate rational power</p><p>
46、; From: Power System Technology</p><p> 電力系統(tǒng)負荷預(yù)測及方法</p><p> 摘要:負荷預(yù)測在電力系統(tǒng)規(guī)劃和運行方面發(fā)揮的重要作用,具有明顯的經(jīng)濟效益,負荷預(yù)測實質(zhì)上是對電力市場需求的預(yù)測。該文系統(tǒng)地介紹和分析了各種負荷預(yù)測的方法及特點,并指出做好負荷預(yù)測已成為實現(xiàn)電力系統(tǒng)管理現(xiàn)代化的重要手段。</p><p>
47、 關(guān)鍵詞:電力系統(tǒng) 負荷預(yù)測 電力市場 建設(shè)規(guī)劃 </p><p><b> 1. 引言 </b></p><p> 負荷預(yù)測是從已知的用電需求出發(fā),考慮政治、經(jīng)濟、氣候等相關(guān)因素,對未來的用電需求做出的預(yù)測。負荷預(yù)測包括兩方面的含義:對未來需求量(功率)的預(yù)測和未來用電量(能量)的預(yù)測。電力需求量的預(yù)測決定發(fā)電、輸電、配電系統(tǒng)新增容量的大??;電能預(yù)測決定發(fā)電
48、設(shè)備的類型(如調(diào)峰機組、基荷機組等)。 負荷預(yù)測的目的就是提供負荷發(fā)展狀況及水平,同時確定各供電區(qū)、各規(guī)劃年供用電量、供用電最大負荷和規(guī)劃地區(qū)總的負荷發(fā)展水平,確定各規(guī)劃年用電負荷構(gòu)成。 </p><p> 2. 負荷預(yù)測的方法及特點 </p><p> 2.1 單耗法 </p><p> 按照國家安排的產(chǎn)品產(chǎn)量、產(chǎn)值計劃和用電單耗確定需電量。單耗法分“
49、產(chǎn)品單耗法”和“產(chǎn)值單耗法”兩種。采用“單耗法”預(yù)測負荷前的關(guān)鍵是確定適當?shù)漠a(chǎn)品單耗或產(chǎn)值單耗。從我國的實際情況來看,一般規(guī)律是產(chǎn)品單耗逐年上升,產(chǎn)值單耗逐年下降。單耗法的優(yōu)點是:方法簡單,對短期負荷預(yù)測效果較好。缺點是:需做大量細致的調(diào)研工作,比較籠統(tǒng),很難反映現(xiàn)代經(jīng)濟、政治、氣候等條件的影響。 </p><p> 2.2 趨勢外推法 </p><p> 當電力負荷依時間變化呈現(xiàn)
50、某種上升或下降的趨勢,并且無明顯的季節(jié)波動,又能找到一條合適的函數(shù)曲線反映這種變化趨勢時,就可以用時間t為自變量,時序數(shù)值y為因變量,建立趨勢模型y=f(t)。當有理由相信這種趨勢能夠延伸到未來時,賦予變量t所需要的值,可以得到相應(yīng)時刻的時間序列未來值。這就是趨勢外推法。應(yīng)用趨勢外推法有兩個假設(shè)條件:(1)假設(shè)負荷沒有跳躍式變化;(2)假定負荷的發(fā)展因素也決定負荷未來的發(fā)展,其條件是不變或變化不大。選擇合適的趨勢模型是應(yīng)用趨勢外推法的重
51、要環(huán)節(jié),圖形識別法和差分法是選擇趨勢模型的兩種基本方法。外推法有線性趨勢預(yù)測法、對數(shù)趨勢預(yù)測法、二次曲線趨勢預(yù)測法、指數(shù)曲線趨勢預(yù)測法、生長曲線趨勢預(yù)測法。趨勢外推法的優(yōu)點是:只需要歷史數(shù)據(jù)、所需的數(shù)據(jù)量較少。缺點是:如果負荷出現(xiàn)變動,會引起較大的誤差。 </p><p> 2.3 彈性系數(shù)法 </p><p> 彈性系數(shù)是電量平均增長率與國內(nèi)生產(chǎn)總值之間的比值,根據(jù)國內(nèi)生產(chǎn)總值的增
52、長速度結(jié)合彈性系數(shù)得到規(guī)劃期末的總用電量。彈性系數(shù)法是從宏觀上確定電力發(fā)展同國民經(jīng)濟發(fā)展的相對速度,它是衡量國民經(jīng)濟發(fā)展和用電需求的重要參數(shù)。該方法的優(yōu)點是:方法簡單,易于計算。缺點是:需做大量細致的調(diào)研工作。 </p><p> 2.4 回歸分析法 </p><p> 回歸預(yù)測是根據(jù)負荷過去的歷史資料,建立可以進行數(shù)學分析的數(shù)學模型。用數(shù)理統(tǒng)計中的回歸分析方法對變量的觀測數(shù)據(jù)統(tǒng)計
53、分析,從而實現(xiàn)對未來的負荷進行預(yù)測。回歸模型有一元線性回歸、多元線性回歸、非線性回歸等回歸預(yù)測模型。其中,線性回歸用于中期負荷預(yù)測。優(yōu)點是:預(yù)測精度較高,適用于在中、短期預(yù)測使用。缺點是:(1)規(guī)劃水平年的工農(nóng)業(yè)總產(chǎn)值很難詳細統(tǒng)計;(2)用回歸分析法只能測算出綜合用電負荷的發(fā)展水平,無法測算出各供電區(qū)的負荷發(fā)展水平,也就無法進行具體的電網(wǎng)建設(shè)規(guī)劃。</p><p> 2.5 時間序列法 </p>
54、<p> 就是根據(jù)負荷的歷史資料,設(shè)法建立一個數(shù)學模型,用這個數(shù)學模型一方面來描述電力負荷這個隨機變量變化過程的統(tǒng)計規(guī)律性;另一方面在該數(shù)學模型的基礎(chǔ)上再確立負荷預(yù)測的數(shù)學表達式,對未來的負荷進行預(yù)測。時間序列法主要有自回歸AR(p)、滑動平均MA(q)和自回歸與滑動平均ARMA(p,q)等。這些方法的優(yōu)點是:所需歷史數(shù)據(jù)少、工作量少。缺點是:沒有考慮負荷變化的因素,只致力于數(shù)據(jù)的擬合,對規(guī)律性的處理不足,只適用于負荷變
55、化比較均勻的短期預(yù)測的情況。</p><p> 2.6 灰色模型法 </p><p> 灰色預(yù)測是一種對含有不確定因素的系統(tǒng)進行預(yù)測的方法。以灰色系統(tǒng)理論為基礎(chǔ)的灰色預(yù)測技術(shù),可在數(shù)據(jù)不多的情況下找出某個時期內(nèi)起作用的規(guī)律,建立負荷預(yù)測的模型,分為普通灰色系統(tǒng)模型和最優(yōu)化灰色模型兩種。普通灰色預(yù)測模型是一種指數(shù)增長模型,當電力負荷嚴格按指數(shù)規(guī)律持續(xù)增長時,此法有預(yù)測精度高、所需樣本
56、數(shù)據(jù)少、計算簡便、可檢驗等優(yōu)點;缺點是對于具有波動性變化的電力負荷,其預(yù)測誤差較大,不符合實際需要。而最優(yōu)化灰色模型可以把有起伏的原始數(shù)據(jù)序列變換成規(guī)律性增強的成指數(shù)遞增變化的序列,大大提高預(yù)測精度和灰色模型法的適用范圍?;疑P头ㄟm用于短期負荷預(yù)測。灰色預(yù)測的優(yōu)點:要求負荷數(shù)據(jù)少、不考慮分布規(guī)律、不考慮變化趨勢、運算方便、短期預(yù)測精度高、易于檢驗。缺點:一是當數(shù)據(jù)離散程度越大,即數(shù)據(jù)灰度越大,預(yù)測精度越差;二是不太適合于電力系統(tǒng)的長期
57、后推若干年的預(yù)測。 </p><p> 2.7 德爾菲法 </p><p> 德爾菲法是根據(jù)有專門知識的人的直接經(jīng)驗,對研究的問題進行判斷、預(yù)測的一種方法,也稱專家調(diào)查法。德爾菲法具有反饋性、匿名性和統(tǒng)計性的特點。德爾菲法的優(yōu)點是:(1)可以加快預(yù)測速度和節(jié)約預(yù)測費用;(2)可以獲得各種不同但有價值的觀點和意見;(3)適用于長期預(yù)測,在歷史資料不足或不可預(yù)測因素較多尤為適用。缺點是
58、:(1)對于分地區(qū)的負荷預(yù)測則可能不可靠;(2)專家的意見有時可能不完整或不切實際。</p><p> 2.8 專家系統(tǒng)法 </p><p> 專家系統(tǒng)預(yù)測法是對數(shù)據(jù)庫里存放的過去幾年甚至幾十年的,每小時的負荷和天氣數(shù)據(jù)進行分析,從而匯集有經(jīng)驗的負荷預(yù)測人員的知識,提取有關(guān)規(guī)則,按照一定的規(guī)則進行負荷預(yù)測。實踐證明,精確的負荷預(yù)測不僅需要高新技術(shù)的支撐,同時也需要融合人類自身的經(jīng)驗
59、和智慧。因此,就會需要專家系統(tǒng)這樣的技術(shù)。專家系統(tǒng)法,是對人類的不可量化的經(jīng)驗進行轉(zhuǎn)化的一種較好的方法。但專家系統(tǒng)分析本身就是一個耗時的過程,并且某些復雜的因素(如天氣因素),即使知道其對負荷的影響,但要準確定量地確定他們對負荷地區(qū)的影響也是很難的。專家系統(tǒng)預(yù)測法適用于中、長期負荷預(yù)測。此法的優(yōu)點是:(1)能匯集多個專家的知識和經(jīng)驗,最大限度地利用專家的能力;(2)占有的資料、信息多,考慮的因素也比較全面,有利于得出較為正確的結(jié)論。缺點
60、是:(1)不具有自學習能力,受數(shù)據(jù)庫里存放的知識總量的限制;(2)對突發(fā)性事件和不斷變化的條件適應(yīng)性差。</p><p> 2.9 神經(jīng)網(wǎng)絡(luò)法 </p><p> 神經(jīng)網(wǎng)絡(luò)(ANN, Artificial Neural Network)預(yù)測技術(shù),可以模仿人腦做智能化處理,對大量非結(jié)構(gòu)性、非確定性規(guī)律具有自適應(yīng)功能。ANN應(yīng)用于短期負荷預(yù)測比應(yīng)用于中長期負荷預(yù)測更為適宜。因為,短期負
61、荷變化可以認為是一個平穩(wěn)隨機過程。而長期負荷預(yù)測可能會因政治、經(jīng)濟等大的轉(zhuǎn)折導致其模型的數(shù)學基礎(chǔ)的破壞。優(yōu)點是:(1)可以模仿人腦的智能化處理;(2)對大量非結(jié)構(gòu)性、非精確性規(guī)律具有自適應(yīng)功能;(3)具有信息記憶、自主學習、知識推理和優(yōu)化計算的特點。缺點是:(1)初始值的確定無法利用已有的系統(tǒng)信息,易陷于局部極小的狀態(tài);(2)神經(jīng)網(wǎng)絡(luò)的學習過程通常較慢,對突發(fā)事件的適應(yīng)性差。</p><p> 2.10 優(yōu)選組
62、合預(yù)測法 </p><p> 優(yōu)選組合有兩層含義:一是從幾種預(yù)測方法得到的結(jié)果中選取適當?shù)臋?quán)重加權(quán)平均;二是指在幾種預(yù)測方法中進行比較,選擇擬和度最佳或標準偏差最小的預(yù)測模型進行預(yù)測。對于組合預(yù)測方法也必需注意到,組合預(yù)測是在單個預(yù)測模型不能完全正確地描述預(yù)測量的變化規(guī)律時發(fā)揮作用。一個能夠完全反映實際發(fā)展規(guī)律的模型進行預(yù)測完全可能比用組合預(yù)測方法預(yù)測效果好。該方法的優(yōu)點是:優(yōu)選組合了多種單一預(yù)測模型的信息,
63、考慮的影響信息也比較全面,因而能夠有效地改善預(yù)測效果。缺點是:(1)權(quán)重的確定比較困難;(2)不可能將所有在未來起作用的因素全包含在模型中,在一定程度上限制了預(yù)測精度的提高。</p><p> 2.11 小波分析預(yù)測技術(shù) </p><p> 小波分析是一種時域-頻域分析法,它在時域和頻域上同時具有良好的局部化性質(zhì),并且能根據(jù)信號頻率高低自動調(diào)節(jié)采樣的疏密,它容易捕捉和分析微弱信號
64、以及信號、圖像的任意細小部分。其優(yōu)點是:能對不同的頻率成分采用逐漸精細的采樣步長,從而可以聚集到信號的任意細節(jié),尤其是對奇異信號很敏感,能很好的處理微弱或突變的信號,其目標是將一個信號的信息轉(zhuǎn)化成小波系數(shù),從而能夠方便地加以處理、儲存、傳遞、分析或被用于重建原始信號。這些優(yōu)點決定了小波分析可以有效地應(yīng)用于負荷預(yù)測問題的研究。 </p><p><b> 3. 結(jié)束語 </b></
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---電力系統(tǒng)負荷預(yù)測及方法
- 電力系統(tǒng)負荷預(yù)測方法研究及應(yīng)用.pdf
- 淺議電力系統(tǒng)負荷預(yù)測的方法及特點
- 電力系統(tǒng)負荷預(yù)測方法的應(yīng)用
- 電力系統(tǒng)短期負荷預(yù)測方法研究及實現(xiàn).pdf
- 電力系統(tǒng)負荷預(yù)測方法及其應(yīng)用.pdf
- 電力系統(tǒng)短期負荷預(yù)測方法及研究【文獻綜述】
- 電力系統(tǒng)負荷分析預(yù)測.pdf
- 電力系統(tǒng)短期負荷預(yù)測方法的研究.pdf
- 電力系統(tǒng)負荷的組合預(yù)測方法研究.pdf
- 電力系統(tǒng)短期負荷預(yù)測方法的研究及實現(xiàn).pdf
- 電力系統(tǒng)負荷預(yù)測研究開題報告
- 電力系統(tǒng)中長期負荷預(yù)測方法研究.pdf
- 電力系統(tǒng)短期負荷智能預(yù)測方法的研究.pdf
- 電力系統(tǒng)外文翻譯
- 電力系統(tǒng)負荷預(yù)測研究開題報告
- 電力系統(tǒng)母線負荷預(yù)測研究.pdf
- 電力系統(tǒng)短期負荷預(yù)測模型及預(yù)測系統(tǒng)開發(fā).pdf
- 基于EMD方法的電力系統(tǒng)短期負荷預(yù)測.pdf
- 基于負荷分解的電力系統(tǒng)短期負荷預(yù)測方法的研究.pdf
評論
0/150
提交評論