2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  本科畢業(yè)設計(論文)外文翻譯</p><p><b>  學生姓名: </b></p><p><b>  學 號: </b></p><p><b>  專業(yè)班級: </b></p><p><b>  指導教師: </b>&

2、lt;/p><p><b>  英文資料</b></p><p>  Multi-phase Flow Analysis in Oil and Gas Engineering Systems and its Modelling</p><p>  Two-phase flow is very common in industrial process

3、es and its applications were already in use in ages as remote as the era of Archimedes. At the present time, many industrial processes rely on multi-phase phenomena for the transport of energy and mass or for material pr

4、ocessing. During the last century, the nuclear, chemical and petroleum industries propelled intense research activity on the area. Their efforts have been aimed at the demystification of the mechanisms taking place durin

5、g this co</p><p>  In the petroleum industry, two-phase flow can be found in a variety of situations. The three more common working fluids (oil, natural gas and water) can have four different two-phase flow

6、permutations: gas–liquid, liquid–liquid, solid–liquid and solid–gas flows. A solid phase can be incorporated to the flow either from the reservoir itself (due to either drilling activities or sand formation during produc

7、tion) or from the formation of complex solid structures due to the prevailing production con</p><p>  Multi-phase flow phenomena can be found in a wide range of length scales of interest. Therefore, the most

8、 suitable approach to study multi-phase flows will largely depend on the length scale of interest. Typically, in the petroleum industry, attention is given to large-scale phenomena in multi-phase flows, as no detailed fl

9、ow behaviour is needed for routine design and operation. For instance, in pipeline networks we are interested only in the pressure drop and liquid hold-up. Other than the effe</p><p>  1.1 The Growth of Mult

10、i-phase Flow Modelling</p><p>  The development of multi-phase flow large-scale analysis in the petroleum industry has been divided into three partially overlapping periods – the empirical period, the awaken

11、ing years and the modelling period1 – which together encompass the second half of the past century. During the empirical period, all efforts were focused on correlating data from laboratory and field facilities in an att

12、empt to encompass the widest range of operational conditions possible. The earliest attempt to empiricall</p><p>  The advent of the personal computer during the 1980s dramatically enhanced the capabilities

13、of handling progressively more complex design situations, which is why this period has been called ‘the awakening years’.1 Much of the petroleum research on multi-phase flow during these years and the subsequent modellin

14、g period was enriched by the progress already made by the nuclear industry. Although the nuclear industry dealt with much simpler fluids (water and steam), it led the way towards more invo</p><p>  The model

15、ling period, which extends up to the present day, refers to the growing tendency of introducing more physically based (mechanistic or phenomenological) approaches into multi-phase flow calculations. The main goal remains

16、 an attempt to reduce the impact of empirical correlations on multi-phase predictions. State-of- the-art multi-phase modelling efforts can be studied in two different but interrelated fields of interest: small-scale and

17、large-scale, depending on the length scale of inter</p><p>  1.2 Large-scale Interest</p><p>  State-of-the-art large-scale multi-phase flow modelling in the oil and gas industry is largely base

18、d on mechanistic models. One of the distinguished features of a mechanistic model is the need for a reliable tool for the prediction of flow pattern transitions for a given set of operational conditions. Perhaps the earl

19、iest attempt to introduce a fully phenomenological description of how transitions occur among the different flow patterns was the work developed by Taitel and Dukler, which focused </p><p>  Additional stead

20、y-state comprehensive mechanistic models for two phase flow in vertical wells, horizontal pipes and deviated wells were presented by Ansari, Xiao, Kaya and co-workers in the 1990s. All these mechanistic models were devel

21、oped at the Tulsa University Fluid Flow Projects and are usually referred to as TUFFP models. Nowadays, there are also a number of commercially available two phase flow packages, which include various features intended t

22、o accomplish specific tasks. Examples includ</p><p>  Modern multi-phase flow analysis models the flow of oil and gas through pipelines by invoking the basic principles of continuum mechanics and thermodynam

23、ics. Depending on how these equations are applied and how the interactions between phases are described, the most widely used two-phase models are the homogeneous model (flow treated as a single phase with averaged fluid

24、 properties), drift-flux model (flow described in terms of an averaged local velocity difference between the phases), separated</p><p>  In the last decade, a great deal of attention has also been devoted to

25、 mechanistic or ‘phenomenological’ models – i.e. models trying to capture specific features of individual flow patterns – in which simplified conservation equations are invoked while the main focus is the prediction of p

26、ressure drop and hold-up. However, in previous decades, the challenge of modelling two-phase flows by invoking such fundamental laws had been circumvented by reliance on empirical and semi-empirical correlation</p>

27、<p>  Perhaps one of the most fundamental and rigorous approaches to the study of large-scale multi-phase flow currently in use in the petroleum industry is the two-fluid model. In the two-fluid model, separate co

28、nservation equations (mass, momentum and energy) are written for each of the two phases for a total of six equations. These equations are coupled with terms describing the interaction between phases. In this two-phase fl

29、ow method of analysis, as well as in all the others, empiricism cannot be</p><p>  1.3 Small-scale Interest and Computational Physics</p><p>  The study of small-scale multi-phase flow has prove

30、d to be extremely difficult for researchers due to the elusive nature of the phenomena and the inherent limitations of experimental set-ups. A great deal of progress has been made on the development of useful small-scale

31、 experimental studies, but numerical experiments or models still remain the most effective way of studying such detailed flow behaviour. The challenge of modelling small-scale multi-phase flow resides in the finite natur

32、e of the </p><p>  The most common small-scale modelling approach discretises the flow domain using a regular and stationary grid – i.e. the well-known Eulerian frame of reference for fluid motion. The first

33、 small-scale Eulerian method proposed was the marker-and-cell (MAC) method, where marker particles distributed uniformly in each fluid were used to identify each fluid. Using this method, in the late 1960s Harlow and Sha

34、non studied the splash when a drop hits a liquid surface. The MAC method has become obsolete</p><p>  Some other small-scale modelling approaches use the Lagrangian frame of reference for fluid motion. In La

35、grangian methods, the numerical grid follows the fluid and deforms with it. In this approach, the motion of the fluid interface needs to be modelled in order to accurately capture the new fluid positions at each time-ste

36、p. At every time-step, the grid is refitted and adjusted to match the location of the new, displaced boundaries. In the 1980s, Ryskin and Leal used this method to study the st</p><p>  Small-scale modelling

37、typically takes advantage of certain multiphase flow conditions that can greatly simplify the modelling process. For example, it is possible to simplify the Navier-Stokes equations by ignoring inertia completely (Stokes

38、flow) or by ignoring viscous effect (inviscid flows) in the limit of low and high Reynolds numbers, respectively. These two limiting cases are typically studied with boundary integral methods. The study of dispersed flow

39、s, for example, can be made especially</p><p>  In addition, a relatively new method in small-scale modelling is the Lattice Boltzmann method. Lattice Boltzmann methods are based on kinetic theory and thus n

40、o Navier-Stokes equations are solved. Instead, the method considers a typical volume element of fluid to be composed of a collection of ‘particles’ that are represented by a particle velocity distribution function for ea

41、ch fluid component at each grid point. In this novel approach, the rules governing the motion and collisions of these ‘pa</p><p>  1.4 Concluding Remarks</p><p>  The most popular modelling appr

42、oach nowadays in the oil and gas industry – above and beyond the use of long-established, fully empirical equations – is large-scale mechanistic modelling. Large-scale modelling includes the use of transient and steady-s

43、tate two-fluid models, as well as a variety of steady-state mechanistic models. However, large-scale multi-phase flow modelling relies much more heavily on empirical or semi-empirical correlations to model the phenomena

44、than small-scale multi-phase </p><p><b>  中文翻譯</b></p><p>  油氣工程中的多相流分析與建模</p><p>  在工業(yè)生產過程中兩相流普遍存在,同樣兩相流的最初應用年代可以追溯到阿基米德時代。目前,工業(yè)生產中的能量、質量運輸或材料加工都是依靠多相流現(xiàn)象來實現(xiàn)的。在上個世紀中,核能、

45、化工、石油工業(yè)的發(fā)展強烈地推進了多相流領域中的相關研究,并且在復雜多相流中力學原理的啟發(fā)下得到了許多重要的研究成果。</p><p>  在石油工業(yè)中,兩相流廣泛存在,三種普遍的工作流體(石油、天然氣、水)可以排列組成四種不同的兩相流體:氣液、液液、固液、固氣。固相可以通過兩種途徑加入流體,一種是來自油層自身:生產過程中鉆頭的運動和沙子的形成,使得固相加入到了流體中;另一種是主要產品生產條件形成的復雜固相結構,例

46、如:天然氣中的碳氫化合物——石油流體中的石蠟和瀝青。</p><p>  石油與天然氣的運輸是一種典型的氣液流體分離系統(tǒng),由于流體不斷變化的性質,所以每個管道中流動的氣、液兩相流體就會有很多復雜的變化過程,因此,可以采用很大范圍的空間模型作為研究氣、液兩相流體的流型參考。</p><p>  多相流現(xiàn)象廣泛存在,所以適合研究多相流現(xiàn)象的途徑也有很多。在石油工業(yè)中,因為在常規(guī)設計和操作中不需

47、要流體的細節(jié)行為,所以最典型的研究途徑是研究大尺度多相流現(xiàn)象,例如,我們僅僅對管道網絡中的壓降和持液率感興趣。盡管研究流體的細節(jié)現(xiàn)象不如研究管道中流體變化結果重要,但是多相流的小尺度研究也是非常重要的,因為小尺度物理成分控制大尺度流體現(xiàn)象,例如,局部的小尺度流體現(xiàn)象驅使流體流型向另外一種流體流型轉變??茖W界發(fā)表的幾個重要問題之一就是發(fā)展并提高對流體狀態(tài)轉變的認識,這個問題只有通過多相流的小尺度研究才可以解決,另外,也要提高對生產設備操作

48、的認識,例如:在石油工業(yè)中,研究小尺度多相流現(xiàn)象與分離器的分離操作的關系是有必要的。</p><p>  1.1 多相流建模的發(fā)展過程</p><p>  石油工業(yè)中多相流大尺度分析的發(fā)展過程可分為三個階段:經驗階段、“蘇醒”階段與建模階段,共同組成了過去世紀的一大半時間。在經驗階段中,所有的努力都集中在實驗室所得數(shù)據與現(xiàn)場所得數(shù)據的相關性方面,根據兩者的關系,試圖包含所有工作條件范圍的模

49、型。最早嘗試利用經驗法預測水平管中兩相流壓降的是洛克哈特和馬丁的著名研究,這種相關性方法被以后無數(shù)的研究著采納,他們也宣稱研究成果可以應用在更廣大的工作條件范圍內,因為這種方法是兩相流建模的第一種定量方法,所以與以后的各種相關性研究比較,洛克哈特和馬丁相關性研究成了經典理論。事實上,大多數(shù)的相關性均可以應用到它們成立的工作條件下,非常值得提起的是Beggs 和 Brill發(fā)明的用來預測傾斜管中流體行為的相關性,隨著對它的一系列修改Beg

50、gs-Brill相關性成為最廣泛使用的相關性之一,這種相關性可以應用到水平、垂直、傾斜管中,基本的相關性參數(shù)是弗魯?shù)孪禂?shù),弗魯?shù)孪禂?shù)是流體運動時重力變化量組成的一維數(shù)組。通常來說,因為應用系統(tǒng)可能在各種條件下工作,而不是在得到相關性的原始條件下工作,所以應用系統(tǒng)經常限制經驗建模方法的使用,盡管如此,經驗建模都是多相流生產設</p><p>  19世紀80年代,個人計算機的出現(xiàn)加強了處理更復雜流型的能力,這也是這

51、個時代成為“蘇醒”時代的原因。在這個階段中,石油中很多研究都是關于多相流的,后來的建模階段是在核工業(yè)取得進步的基礎上強化的。盡管核工業(yè)處理的較簡單流體(水和氣),但是它的研究為石油工業(yè)中兩相流的分析指明了方向,更多基礎的多相流分析方法已經在19世紀70年代核工業(yè)中使用,例如:兩種流體的建模方法,這些“種子”式的成果是著名的快速瞬態(tài)兩相流標識符---RELAP4, RELAP5, RETRAN, MEKIN, COBRA, CATHARE

52、 and TRAC的起源, 今天這些標識符仍然在核工業(yè)中使用?,F(xiàn)在,隨著不斷使用日益完善的建模工具,石油工業(yè)可能在研究多相流方面已經擴展了新的途徑。</p><p>  已經擴展到今天的建模階段指的是將基于物理(力學和現(xiàn)象學)建模的方法應用到多相流計算中,這個階段的主要目標是彌補經驗相關性方法在預測多相流變化方面的不足。根據建模人感興趣的多相流尺度不同,當前多相流建模發(fā)展水平成果可以分為兩種不同但又相關的研究領域

53、:小尺度模型和大尺度模型。盡管最近幾年,石油天然氣工業(yè)主要關心的是大尺度多相流模型,但是在未來的石油天然氣工業(yè)中小尺度模型將會給予多相流模型更精確、可靠的物理認識。</p><p><b>  1.2 大尺度建模</b></p><p>  當前石油天然氣工業(yè)中的大尺度多相流建模大都是基于多相流力學模型發(fā)展而來,力學建模法最顯著的特點是對預測給定工作條件下的流型轉換提

54、供了可靠工具。最早嘗試描述流型間互相轉化工作原理的是Taitel和Dukler,他們一直致力于研究水平管多相流和近似水平管多相流。他們的研究成果被認為是預測多相流變化的經典理論之一,并與其它理論的物理見解融合到石油工業(yè)多相流分析中,更加開創(chuàng)了多相流流型轉化領域研究的先河,同時現(xiàn)在的兩相流建模仍然在使用大多數(shù)的流型轉化規(guī)則。在最初研究開始幾年后,Taitel與其他合作人將這種建模的方法應用到了垂直管多相流與近似垂直多相流工程中。19世紀8

55、0年代,Barnea將多相流現(xiàn)象學方法擴展到了所有傾斜管多相流研究中。這三項有關多相流領域的研究成果經常被多相流領域中的研究人員采用,同時他們也試圖提高對多相流模型的認識。</p><p>  除此之外,19世紀90年代,Ansari, Xiao, Kaya及其合作者提出了要對垂直管、水平管、分離管中兩相流進行全面的穩(wěn)態(tài)力學建模,因為所有的力學模型都是在塔爾薩大學流體流動工程系建立的,所以這些模型也簡稱為TUFF

56、P模型?,F(xiàn)在,已經有許多商業(yè)化的能夠完成專門任務的兩相流軟件包,例如:OLGA, TACITE, PEPITE 及 PIPESIM等等。</p><p>  現(xiàn)在,石油天然氣管道中多相流分析與建模都是引用管道基本的連續(xù)力學和熱學原理完成的。根據方程應用形式和相間作用描述形式的不同,廣泛應用的兩相流模型可以分為均勻模型(將流體看作是多流體特性平均的單相流)、流體漂移模型(根據各流體相間的平均局部速率差描述的流體)、

57、分離模型(認為流體相在管道中的不同分離地帶流動)及二流體模型(將多相流體模型看作是兩種流動的相分及相互間作用)。</p><p>  最近十年中,研究人員在研究力學模型或現(xiàn)象學模型(只針對某一流體流型特點的模型)上投入了大量的精力。當把主要的焦點轉移到預測管道流體的壓降和持液率時引用了簡單的守恒方程,然而,更早的幾十年前,引用這些基本原理對兩相流體建模的方法遭到了經驗或半經驗相關性建模方法的抵制,這種矛盾在石油工

58、業(yè)中表現(xiàn)得最為突出。</p><p>  當前,石油工業(yè)中研究大尺度多相流建模的最基本、嚴謹?shù)姆椒ㄊ嵌黧w建模法。在二流體建模中,每中流體相都有三個單獨的守恒方程(質量、動量及能量),總共六個方程式,每個方程式都注明了兩種流體相互作用的條件。因為在試圖模擬守恒方程的各種結構關系時經驗相關性方法起到了重要作用,所以在二流體建?;蚱渌膬上嗔鞣治龇椒ㄖ薪涷炏嚓P性方法是不可缺少的,額外的閉合關系也需要經驗相關性方法。例

59、如:Ayala 等人就提出了天然氣管道流體分析的二流體模型,他們假設模型成立的前提是天然氣和天然氣冷凝物是一個整體,并且引用了連續(xù)力學基本原理與相熱學行為模型,所以在Ayala等人的研究工作中有關模型的細節(jié)討論與半經驗主義有關而不是數(shù)學計算。</p><p>  1.3 小尺度建模和計算物理學</p><p>  因為多相流現(xiàn)象的難易捉摸的特性和經驗相關性方法遺留的局限,所以對研究者來說,

60、小尺度多相流研究極其困難。盡管在小尺度多相流實驗的研究中取得了一定的進步,但是數(shù)值實驗和數(shù)值模型仍然停留在研究流體細節(jié)行為的有效方式中。小尺度多相流建模的挑戰(zhàn)性在于計算機處理數(shù)據的有限能力和追蹤不同特性流體相(或者流體相間的界面)的困難,這兩種互相影響的因素已經歷史性地限制了小尺度模型仿真復雜多相流研究的發(fā)展。但是,最近十年隨著不斷利用多樣化的數(shù)字技術,小尺度多相流模型的研究也取得了較大進步,所以多相流流型研究也成了熱門課題。在19世紀

61、60年代早中期,一大批科學家在Los Alamos國家實驗室開始研究計算流體動力學原理時,就標志著小尺度多相流現(xiàn)象研究已經開始了。在用小尺度建模法對多相流建模時,通過一種合適的數(shù)值計算方法求解帶有邊界條件的納維—斯托克斯方程,例如:有限體積體積法、有限差分法、有限元素法及頻譜分析法。因為建模時的邊界條件定位于自由移動、變化、分解、合并的相位邊界,所以在考慮某些邊界條件是隨時間不斷變化時主要問題就表現(xiàn)出來了,因而提出了不同的計算方法,以下

62、將介紹其中幾種。</p><p>  最常用的小尺度建模方法是利用一個規(guī)則的、固定的柵板離散化多相流流體區(qū)域,也就是著名的歐拉參照理論在流體運動學中的應用。第一個提出小尺度歐拉方法的是標記點和格子(MAC)方法,在這種方法中識別流體的標志粒子被統(tǒng)一分布在每相流體中。19世紀60年代后期,Harlow和Shanon曾利用MAC方法研究液面上的濺點。此后,MAC方法被眾人遺忘,并被其它有標志性功能的方法取代,例如:所

63、謂的流體體積(VOF)方法。在VOF方法中,因為兩種流體之間的轉換發(fā)生在一個格子點的情況下,所以VOF方法主要解決的困難問題是如何定義兩種流動流體之間明確的邊界條件。為了解決VOF方法遇到的困難,液位設定(LT)方法采用了連續(xù)非離散的標志功能粒子識別流體,LT方法既在兩種流體有效范圍內創(chuàng)建了平滑轉換區(qū)又避免了明確邊界條件的困難。</p><p>  另外一些小尺度多相流建模方法是基于拉格朗日流體運動理論的,在拉格

64、朗日流體運動理論中數(shù)模網格是隨著流體的變化而變化的。在這種方法中,為了能夠精確抓住每個時間步下新流體位置,需要對流體運動交界面進行建模,因而在每個時間步中,為了匹配新位移界限的位置,數(shù)模網格都在不斷變化調整中。19世紀80年代,Ryskin和Leal用這種方法研究了輕快的、易變形的、軸對稱泡沫的穩(wěn)態(tài)上升問題;與此同時,Oran和Boris正研究二維空間下液滴的分解問題。與此建模方法相似的一種方法也被使用:前緣追蹤方法,在前緣追蹤方法中單

65、獨的前緣標志粒子標示流體界面,固定柵格應用于每相流體,但是在靠近流體界面前端處的柵格經常被修改,所以會有一條單格線隨著流體界面的變化而變化。</p><p>  小尺度多相流建模典型的利用了多相流的某些特性,這些特性可以大大簡化其建模過程,例如:忽略斯托克斯流型的慣性作用或忽略非粘性流體中因各自的雷諾系數(shù)限制的粘性作用可以簡化納斯—斯托克斯方程,這兩種限制條件可以利用邊界積分方法解決。例如:因為研究分散流體更加簡

66、單,所以分散流體的研究對小尺度建模有著義不容辭的責任。分散流體建模的兩種主要方法是歐拉—歐拉法和歐拉—拉格朗日法。在歐拉—歐拉法中,利用分離變數(shù)方程對分散流體相與連續(xù)流體相求解。因為沒有任何嘗試求解流體中粒子的細微的運動,所以需要粒子、連續(xù)流體相間的作用力和流體運動構成閉合關系。這種閉合關系由實驗相關性(與利用雷諾平均納斯—斯托克斯方程計算湍流流體的結果相似)決定。在歐拉—拉格朗日方法中,利用流體內部不斷運動的粒子和其它常量密度流等換取

67、代分散流體,也就是所謂的點粒子的逼近方法,拉格朗日方法中一直存在粒子模型,并且在分析實驗模型中也指定了粒子間的互相作用力(例如:曳力)。盡管在某些情況下,假設的粒子模型對流動流體沒有任何作用,但是在另外的很多情況中粒子間相互作用力被添加到連續(xù)相納斯—斯托克斯方程的右邊。盡管粒子間相互作用對理解粒子合并很重</p><p>  另外,Lattice-Boltzmann方法是與小尺度多相流建模相關的新方法,因為Lat

68、tice-Boltzmann方法以分子運動論為基礎,所以不用求解納斯—斯托克斯方程。相反,Lattice-Boltzmann方法認為流體的典型體積元素是眾多粒子的集合,這些粒子由網格點處每種流體成分的質點速度分布函數(shù)所描繪。在這種新奇的方法中,根據粒子的時間平均運動方式設計了流體運動控制的規(guī)則和運動粒子碰撞的規(guī)則,這些規(guī)則與納斯—斯托克斯方程式是一致的。</p><p><b>  1.4 結束語<

69、;/b></p><p>  當今石油天然氣工業(yè)中最受歡迎的多相流建模方法是大尺度多相流力學建模方法,它的使用頻率已經遠遠超過了長期建立的完全憑經驗的方程式。盡管大尺度多相流模型包括瞬態(tài)和穩(wěn)態(tài)兩相流體模型及其他各種各樣的穩(wěn)態(tài)力學模型,但是大尺度多相流建模方法比小尺度多相流分析方法在現(xiàn)象建模中更依靠經驗或半經驗相關性,而小尺度多相流分析方法依靠基礎的流體動力學方程直接求解。小尺度多相流分析方法對研究大型工業(yè)系

70、統(tǒng)沒有突出貢獻是其在多相流領域中的局限,盡管石油天然氣工業(yè)依靠大尺度多相流分析方法,而不使用小尺度多相流建模方法對石油天然氣系統(tǒng)進行仿真和建模,但是小尺度多相流建模方法在多相流研究領域得到的物理見解是任何其它建模方法都無法比較的。現(xiàn)在最希望受到小尺度多相流建模方法復雜性的啟發(fā),可以幫助未來的大尺度多相流建模。同時利用大尺度與小尺度多相流建模方法表現(xiàn)了兩者強有力的結合,對理解多相流現(xiàn)象也有著重要的意義。例如:小尺度多相流建模方法在提高半經

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論