版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 播期對優(yōu)質(zhì)脂肪酸大豆品系農(nóng)藝性狀和種子組分的影響</p><p> C. L. Ray,* E. R. Shipe, and W. C. Bridges</p><p> 摘 要:最近大豆育種者的研究重點之一是開發(fā)優(yōu)質(zhì)油用大豆,如降低棕櫚酸(16:0)和亞油酸(18:3)。一個回交育種計劃育成了5個低-(16:0),2個低-(16:0)+(18:3)及1個低-(1
2、8:3)改良脂肪酸品系。本次研究的主要目標是:1,分析播期對這8個優(yōu)質(zhì)脂肪酸品系的脂肪酸含量的影響;2,比較這8個優(yōu)質(zhì)脂肪酸品系與普通品種的種子組分和農(nóng)藝性狀的不同。試驗分別于2001,2003,2004年在克萊姆斯和南卡羅萊納州兩地對8個優(yōu)質(zhì)脂肪酸品系和4個對照的普通品種進行兩個播期播種。選擇播期來模擬南卡羅萊納州大豆生產(chǎn)的一個生長季和兩個生長季。農(nóng)藝性狀包括籽粒產(chǎn)量、株高、倒伏性、成熟期、籽粒大小、品質(zhì),以及籽粒的蛋白質(zhì)、油分和脂肪
3、酸水平。播期對所有的農(nóng)藝性狀有顯著影響,同時對蛋白質(zhì)、油分、棕櫚酸和亞油酸水平有影響。晚播使棕櫚酸的含量降低,早播導致亞油酸水平降低?;蛐蛯λ修r(nóng)藝性狀和種子成分有顯著影響。如此看來,雖然基因型可以不同程度的減少棕櫚酸和亞油酸的含量,播期也可能影響優(yōu)質(zhì)脂肪酸品系的棕櫚酸和亞油酸的減少。</p><p> 關(guān)鍵詞:修飾脂肪酸品系;美國農(nóng)業(yè)部國家應(yīng)用研究中心</p><p> 大豆油分中
4、平均含有將近14%的飽和脂肪。棕櫚酸和硬脂酸的減少會降低大豆油中飽和脂肪水平。2006年,美國食品和藥品協(xié)會要求食品要標明飽和、不飽和及游離脂肪酸的種類和含量。亞油酸影響的穩(wěn)定性,味道和氣味,并且在提煉油的過程中促使了氫化作用。減少亞油酸水平將減少油的氫化作用,提高其穩(wěn)定性,改善食味和氣味。減少了氫化作用反過來也會降低大豆油中的游離脂肪酸。</p><p> 一般認為大豆籽粒成分受環(huán)境因素的影響。通過在不同地區(qū)
5、和年份種植,大豆籽粒的組分也不同。通過多點多年試驗,大豆籽粒組分的不同可能是由于氣候條件的不同。有人認為溫度是對大豆籽粒成分影響最大的環(huán)境因素。在大豆籽粒成熟過程中的油分積累階段(R5-R6生長時期)高溫會導致油分含量的升高和蛋白質(zhì)含量的降低(P、B1999)。在大豆籽生長發(fā)育過程中溫度條件被認為對不飽和脂肪酸的組分有最大的影響(H、C1957,S、R1978)。從一項在美國南部和Puerto Rico兩地的關(guān)于減少棕櫚酸種質(zhì)的研究結(jié)果
6、,可以看出棕櫚酸含量的多變性。它的大多易變性都和生長期間的最低溫度的變化有關(guān)。Cavrer等人在1986年的研究結(jié)果表明將大豆種在較溫暖的環(huán)境下,籽粒中油酸、亞油酸及亞麻酸的水平都有所提高。與飽和脂肪酸和單不飽和脂肪酸相比,低亞麻酸含量的品系對環(huán)境的改變反應(yīng)越來越不靈敏。</p><p> 直覺判斷,這些研究結(jié)果表明播期可能影響一個大豆基因型的脂肪酸的構(gòu)成。播期的不同影響植株在籽粒成熟期油分積累階段的溫度以及生
7、長季的長度。T等人在1979年的研究結(jié)果是,大豆籽粒的脂肪酸組分也受生長時期長度的影響。光周期促進大豆生長和成熟的生理進程。播期影響生長階段的長度,它決定了成熟前植株的發(fā)育天數(shù)。</p><p> W等人的研究結(jié)果表明,晚播可能使棕櫚酸和亞麻酸的含量下降,而使硬脂酸的水平略微升高。這個研究也表明了在大豆籽粒成熟的最后20天,亞油酸含量隨溫度的升高而升高。S等人的研究結(jié)果表明播期對一些不同的基因型和年份的大豆的脂
8、肪酸水平有很大影響。通過不同年份的結(jié)果平均值表明,播期對改良棕櫚酸結(jié)構(gòu)的基因型品沒有產(chǎn)生顯著的不同影響。與w等人的結(jié)論相反,s等人的結(jié)果是在籽粒成熟的最后20天溫度不能對籽粒成分的不同做出最后的解釋。O等人2006年對13個有改良油酸結(jié)構(gòu)的基因型品種及4個普通品種在10個不同環(huán)境下進行了穩(wěn)定性分析。他們復原了在大豆生殖生長的最后30天的平均溫度下的脂肪酸水平。他們發(fā)現(xiàn),所有品種的油酸含量隨溫度的升高而升高,亞麻酸的含量隨溫度的升高而降低
9、。不同基因型品種的油分的穩(wěn)定性不同,如中等含量的油酸基因型品種沒有油酸含量更低的品種穩(wěn)定。他們還聲明,與亞麻酸含量正常的品系相比,亞麻酸含量最低品系的亞麻酸含量受溫度變化的影響較小。</p><p> 常規(guī)品種的天然大豆油一般含有10%的棕櫚酸(16:0),4%的硬脂酸(18:0),22%的油酸(18:1),54%的亞油酸(18:2)及大約10%的亞麻酸(18:3)。至少兩個隱性等位基因控制低-16:0的性狀表
10、達。這兩個等位基因結(jié)合的結(jié)果是低于4%16:0,從而降低飽和脂肪酸水平。至少兩個隱性等位基因控制低-18:3的性狀表達。這兩個等位基因結(jié)合的結(jié)果是低于3%18:3。提煉油時,低-18:3的油自然有優(yōu)于氫化大豆油的氧化穩(wěn)定性和食味特征。</p><p> 美國農(nóng)業(yè)部大豆基因組計劃通過讓兩個低-16:0品系和一個低-18:3品系的雜交,意圖通過理想脂肪酸性狀的回交得到更高產(chǎn)和更好的農(nóng)藝性狀。Hagood和Maxcy
11、被用作適合的輪回親本。Dillon和一個低-18:3品系雜交。共得到了8個改良脂肪酸體系。這個研究的目標是:1,分析播期對這8個改良脂肪酸品系的脂肪酸含量的影響;2,將它們與其親本品系(Dillon、Maxcy、Hagood)的籽粒組分和農(nóng)藝性狀比較。迄今為止,對于適合美國中南部種植地區(qū)的大豆種質(zhì),播期對其籽粒成分的影響還沒有被研究清楚。</p><p><b> 材料與方法(略)</b>
12、</p><p><b> 結(jié)果與討論</b></p><p><b> 種子組分</b></p><p> 不同的播期對種子組分有顯著性差異,硬脂酸,油酸和亞油酸除外(見表2)。不同年份和不同播期的平均計算表明基因型對七個品系的種子組分有顯著性影響。播期和基因型對棕櫚酸,硬脂酸,油酸,亞油酸,亞麻酸,氨基酸的互作效
13、應(yīng)顯著。播期、基因型、和年份的互作對蛋白質(zhì)、油酸、亞油酸的影響顯著。大多變量之間存在互作效應(yīng),他們沒有得到基因型水平的顯著改變的結(jié)論。播期影響溫度對不同基因型品系在籽粒充實階段的影響最大。籽粒充實階段是指生理成熟前4周。對于早期播種的植株,溫度介于籽粒充實階段第一周的26-28℃到最后一周的21-23℃。對于播種較晚的溫度范圍在22-24℃籽粒充實階段第一周和19-21℃最后一周。</p><p> 播期和基因
14、型對種子蛋白質(zhì)的影響顯著。不同基因型品系的蛋白質(zhì)平均水平在388-419g/kg之間,這在當前利用的商業(yè)品種的正常范圍之內(nèi)。早播使不同基因型品種有顯著較高的蛋白質(zhì)含量,但是僅僅高了4g/mg。在不同年份和播期下MFAL SC01-51品系的平均蛋白質(zhì)含量最高(419 g kg–1)。通常修飾脂肪酸體系的蛋白質(zhì)含量水平均在可接受的范圍之內(nèi),但是有一例外就是他們均超出其親本的蛋白質(zhì)含量水平。MFAL SC9636-1756一個low 16:
15、0 Maxcy衍生系是MFAL中唯一一個蛋白質(zhì)含量沒有超越親本的品種。在相同年份和基因型,播期對籽粒油分含量由很大的影響;在相同年份和播期下,不同基因型的油分含量也有很大不同。MFAL中的所有Maxcy衍生系的籽粒油分含量明顯低于其輪回親本。不同基因型的種子油分范圍為173 -200 g kg–1,這是目前商業(yè)品種的正常范圍之內(nèi)。早播使油分含量明顯的高于晚播。通常在籽粒構(gòu)成階段升高溫度有助于種子油分含量的增加。這個結(jié)果支持了先前的一個研
16、究即基于種子發(fā)育期間與遇高溫會增加種子的油分含量預(yù)計提前播種日期會增加種子中的油分含量??刂破贩NSoyola的</p><p> 播期對硬脂酸的影響沒有明顯的不同。而相同的年份和播期下,基因型對其的影響顯著。其中四個MFALs的硬脂酸水平比水平最低的控制品種Hagood(34.2 g kg–1)的硬脂酸的水平更低?;蛐蛯taeric酸的水平影響更明顯。其中Hagood衍生系MFAL SC9631-1505的
17、硬脂酸的水平最低(30.4 g kg–1)。播期對油酸的影響沒有明顯的不同。而相同的年份和播期下,基因型對其的影響顯著。不同基因型的oleic含量范圍為258.0 -198.8g/ kg,大部分的商業(yè)品種水平都在這個范圍之內(nèi)。Soyola創(chuàng)出最高的油酸水平,而MFALSC9634-1657創(chuàng)出最低的油酸水平。通常MFALs生產(chǎn)的油酸水平均低于其親本水平。</p><p> 在相同的年份和基因型下,播期對亞油酸水
18、平?jīng)]有明顯的影響。只有一個MFAL, SC9634-1657,和 Hagood在早播下有較高的亞油酸水平。在相同的年份和播期下,基因型對亞油酸水平由顯著的影響。所有的 MFALs 的亞油酸水平均高于四個親本品種。八個MFALs的亞油酸水平介于588.2 to657.6 g kg–1, 而四個控制品種則介于550.6 to 577.1 g kg–1 。</p><p> 播期、基因型及其播期和基因型的互作均對亞油
19、酸水平由很大的影響。晚播產(chǎn)生的最高的亞油酸水平為73 g kg–1。在相同的年份和播期下,不同的基因型亞油酸水平有明顯的不同。不同基因型的亞油酸水平在93.1 - 40.4 g kg–1. 以選亞油酸水平為目的選育出的MFALs SC00-1741和 SC01-51產(chǎn)生了最低亞油酸水平。這兩個品系與一個商業(yè)品種低亞油酸水平的Soyola (42.1 g kg–1)的亞油酸水平相等。</p><p> 文獻出處:
20、C. L. Ray,* E. R. Shipe, and W. C. Bridges, Jr. 2008.Planting Date Infl uence on Soybean Agronomic Traits andSeedComposition in Modifi ed Fatty Acid Breeding Lines. Crop Sci. 48:181–188.</p><p><b> 外文
21、原文</b></p><p> Planting Date Infl uence on Soybean Agronomic Traits andSeedComposition</p><p> in Modifi ed Fatty Acid Breeding Lines</p><p> C. L. Ray,* E. R. Shipe, and W
22、. C. Bridges</p><p><b> ABSTRACT</b></p><p> A primary focus for soybean [Glycine max (L.)Merr.] breeders recently has been the development of cultivars with improved oil qualities
23、 such as reduced palmitic acid (16:0) and linolenic acid (18:3). A backcross breeding program was used to develop fi ve low 16:0, two low 16:0 + 18:3, and one low 18:3 modifi ed fatty acid breeding lines (MFALs). Researc
24、h objectives were (i) to determine planting date effects on fatty acid content in the eight MFALs and (ii) to compare the MFALs to parental culti</p><p> Abbreviations: MFAL, modifi ed fatty acid breeding l
25、ine; NCAUR,USDA National Center for Utilization Research.</p><p> Soybean [Glycine max (L.) Merr.] oil contains approximately 14% saturated fat on average (Wilson, 2004). Reduction in palmitic and stearic a
26、cids will decrease the level of saturated fat in soybean oil. In 2006, the U.S. Food and Drug Administration required food labeling to include levels of saturated, unsaturated, and trans fatty acids (U.S. Food and Drug A
27、dministration,2006). Linolenic acid aff ects soybean oil stability, fl avor, and odor and drives the need for hydrogenation in the refi neme</p><p> Soybean seed composition is known to be affected by envir
28、onmental factors. Composition of soybean seeds has been shown to diff er across environments and years (Cherry et al., 1985;McClure, 1999; Schnebly and Fehr, 1993). Diff erences in soybean seed composition are likely due
29、 to variable weather conditions that occur across locations and years (Primomo et al., 2002). It is hypothesized that temperature is the environmental factor with greatest infl uence on soybean seed composition. During t
30、he </p><p> In light of such research results, it is intuitive that planting date may aff ect the fatty acid profi le of a given soybean genotype. Diff erences in planting date aff ect temperatures that a s
31、oybean crop will be subjected to during the oil deposition phase of seed maturation and length of the growing season. Results from Takagi et al. (1979) indicate that the fatty acid composition of soybean seeds is also af
32、f ected by length of growth period. Photoperiodism is the principle physiological proc</p><p> Results from Wilcox and Cavins (1992) suggest that palmitic and linolenic acids may decrease with later plantin
33、g dates while stearic acid levels are slightly increased. Results from that study also suggest that increasing temperature during the last 20 d of seed maturation results in a concomitant decrease in the level of linolen
34、ic acid. Results from Schnebly and Fehr (1993) indicate that planting date had a signifi cant eff ect on fatty acid levels in some genotypes and years. When averaged acr</p><p> Crude soybean oil from conve
35、ntional genotypes typically contains 10% palmitic acid (16:0), 4% stearic acid (18:0), 22% oleic acid (18:1), 54% linoleic acid (18:2), and about 10% linolenic acid (18:3) (Wilson, 2004). At least two recessive alleles c
36、ontrol expression of the low-16:0 trait in soybean (Erickson et al., 1988; Schnebly et al.,1994; Stojsin et al., 1998). When combined, these two alleles result in less than 4% 16:0, thus reducing the level of saturated f
37、atty acid. At least two recessiv</p><p> Hybridizations were made with two low-16:0 lines and one low-18:3 line developed by the USDA Soybean Genetics program at Raleigh, NC, with the intent to backcross th
38、e desirable fatty acid traits into higher-yielding and improved agronomic genotypes. Adapted cultivars used as recurrent parents were Hagood (MG VII) (Shipe et al., 1992) and Maxcy (MG VIII) (Shipe et al., 1995).A cross
39、of Dillon (MG VI) (Shipe et al., 1997) by a low 18:3 line was also made. A total of eight modifi ed fatty acid line</p><p> (i) to determine the eff ect of planting date on fatty acid content in eight modif
40、i ed fatty acid lines (MFALs) and (ii)to compare them to parental cultivars Dillon, Maxcy, and Hagood for seed composition and agronomic traits. To date, planting date eff ects on soybean seed composition have not been i
41、nvestigated for germplasm adapted to the southeastern U.S. growing region.</p><p> RESULTS AND DISCUSSION</p><p> Seed Composition</p><p> Significant diff erences were recorded
42、between planting dates for all seed composition variables except stearic, oleic,and linoleic acid levels (Table 2). Signifi cant diff erences were observed among genotypes for the seven seed composition variables measure
43、d when means were computed across years and planting dates. Signifi cant planting date by genotype interactions were observed for protein and palmitic, stearic,oleic, linoleic, and linolenic acids. Signifi cant planting
44、date by genotype by y</p><p> Planting date had a substantial impact on the temperatures genotypes were subjected to during the seed fill phase of development (Table 3). The seed fi ll phase was considered
45、to be 4 wk before physiological maturity. For the early planting date, temperatures ranged from 26 to 28°C (78–83°F) in the fi rst week of seed fi ll to 21 to 23°C (69–74°F) in the last week of seed f
46、i ll. For the late planting date, temperatures during seed fi ll ranged from 22 to 24°C (71–75°F) and 19 to 21°C (66–70°F) f</p><p> Significant differences for seed protein were observe
47、d for planting dates (Table 4) and genotypes (Table 2). Mean seed protein levels among genotypes ranged from 388 to 419 g kg–1 (data not shown), which is within the normal range for currently available commercial cultiva
48、rs (Wilson,2004). Genotypes at the early planting date had a significantly higher seed protein level than at the late planting date, but the diff erence was only 4 g kg–1. The MFAL SC01-51 had the highest mean seed prote
49、in leve</p><p> Significant differences in seed oil levels were recorded between planting dates when computed across genotypes and years (Table 4). Signifi cant diff erences in seed oil levels were also rec
50、orded between genotypes when computed across years and planting dates. All Maxcy-derived MFAL were signifi cantly lower in oil content that the recurrent parent (data not shown). Seed oil levels among genotypes ranged fr
51、om 173 to 200 g kg–1, within the normal range for commercially available cultivars (Wilson</p><p> Later planting dates produced signifi cantly lower (p = .0519) palmitic acid levels when means were compute
52、d across years and genotypes (Table 5). Lower palmitic acid levels at the late planting date are in agreement with a previous study showing that palmitic acid levels tend to decrease with successively later planting date
53、s (Wilcox and Cavins,1992). Significant differences for palmitic acid levels were also recorded between genotype means. The MFAL SC01-51, selected for both low palmitic and </p><p> No significant differenc
54、es were observed between planting dates for stearic acid (Table 4). Signifi cant diff erences were recorded among genotypes when averaged across years and planting dates. Four MFALs produced lower levels of stearic acid
55、than the lowest control cultivar Hagood(34.2 g kg–1). The eff ect of genotype was highly significant for stearic acid. The MFAL SC9631-1505, derived from Hagood, had the lowest level of stearic acid (30.4 g kg–1).Early a
56、nd late planting dates were not stat</p><p> No signifi cant eff ect (p = 0.0687) of planting date on linoleic acid levels was observed when means were computed across years and genotypes (Table 4). Only on
57、e MFAL, SC9634-1657, and Hagood had higher levels of linoleic acid at the early planting date. Signifi cant diff erences existed between genotypes for mean levels of linoleic acid when averaged across years and planting
58、dates (Table 2). All MFALs produced signifi cantly higher levels of linoleic acid than the four control cultivars. The </p><p> The effect of planting date, genotype, and planting date × genotype inter
59、actions were all highly signifi cant on linolenic acid levels (Table 2). The late planting date produced the highest mean linolenic acid level (73 g kg–1) (Table 6). Signifi cant diff erences among genotypes for mean lin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紫蘇(perillafrutescensl.)農(nóng)藝和品質(zhì)性狀的基因型差異以及栽培技術(shù)對產(chǎn)量與脂肪酸組分的影響
- 大豆脂肪酸組分遺傳及QTL分析.pdf
- 不同播期和產(chǎn)地對桔梗農(nóng)藝性狀及品質(zhì)的影響.pdf
- 不同播期對谷子產(chǎn)量及主要農(nóng)藝性狀的影響
- TRANSPARENT TESTA2調(diào)控種子脂肪酸合成的分子機制及脂肪酸組分對植物逆境抗性的影響.pdf
- 反式脂肪酸和飽和脂肪酸對大鼠胰島素抵抗的影響.pdf
- 飼料脂肪酸對OLETF大鼠血清磷脂脂肪酸組成和糖代謝的影響.pdf
- 硒和多不飽和脂肪酸對綿羊體組織脂肪酸組成影響.pdf
- 大豆與豆腐中蛋白質(zhì)和脂肪酸組分的相關(guān)性研究.pdf
- 大豆種質(zhì)脂肪酸主要組分鑒定與QTL標記定位.pdf
- 過表達GmDof4和GmDof11基因?qū)Ω仕{型油菜種子脂肪酸組分的影響.pdf
- 日糧添加豆油和胡麻油對脂肪酸消化代謝和牛奶中脂肪酸組成的影響.pdf
- 調(diào)控幾個脂肪酸合成關(guān)鍵基因?qū)τ筒朔N子芥酸含量的影響.pdf
- 調(diào)控超長鏈脂肪酸合成關(guān)鍵基因?qū)χ参锓N子中脂肪酸組成的影響.pdf
- 不同脂肪酸組分飲食對OLETF大鼠胰島素抵抗的影響.pdf
- 整形方式和疏穗處理對‘赤霞珠’葡萄種子中脂肪酸的影響.pdf
- 播種期和種植密度對桂南地區(qū)菜用大豆產(chǎn)量及某些農(nóng)藝性狀的影響.pdf
- 不同配比的功能性脂肪酸對攝入反式脂肪酸大鼠的血脂及組織脂肪酸代謝的影響.pdf
- 認識脂肪和反式脂肪酸
- 甘藍型油菜籽有益脂肪酸組分的種子胚和母體植株QTL定位.pdf
評論
0/150
提交評論