關于幾類圖的(模,整,模整)和數.pdf_第1頁
已閱讀1頁,還剩53頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、從實用的觀點來看,和圖標號可用作圖的壓縮表示,即表示圖的數據結構.當利用輸入圖的壓縮表示來工作時,數據壓縮不僅可以節(jié)省內存,還可以加快某些圖算法的運算速度.1990年,Harary提出了和圖的概念,從而開始了對和圖的研究.目前對和圖的研究主要是從一些特殊圖類著手,確定它們的和數、整和數與模和數.迄今為止,已經取得了許多成果.在該文的第一章中,我們主要介紹了文章中所涉及的一些概念、術語和符號;在第二章和第三章中,我們分別確定了扇Fn(n≥

2、2)與圖Kn,n-E(nK2)的和數、整和數以及模和數;在第四章中,我們主要研究完全二分圖與圖Kn-E(Kr)的模和數;最后,在第五章中,我們定義了模整和圖與模整和數的概念,給出了模和數、整和數以及模整和數之間的若干關系,并討論了若干圖類的模整和數.令V(G)表示圖G的頂點集合,|S|表示集合S中元素的個數.令N(Z)表示正整數(整數)集,N(Z)的非空有限子集S的和圖G,'+>(S)是圖(S,E),其中uv∈E當且僅當u+v∈S.一個

3、圖G稱為(整)和圖,若它同構于某個S N(Z)的和圖.(整)和數σ(G)(ζ(G))是使得G U nK<,1>是(整)和圖的非負整數n的最小值.模和圖是取S Z<,m>\{0}且所有算術運算均取模m(≥|S|+1)的和圖.一個圖G的模和數ρ(G)是使得G U ρK<,1>是模和圖的孤立點數ρ的最小值.在該文中,我們主要得到如下定理.定理2.1.1 ρ(F<,4>)=1,對n=3和n≥5有ρ(F<,n>)=2.定理2.2.1對n≥3,σ(

4、F<,n>)=2,n=4,3,n=3或者n≥6且n為偶數,4,n≥5且n為奇數.定理2.2.2當n≥3時,F<,n>是整和圖.定理3.1.1當n≥6時,ρ(K<,n,n>-E(nK<,2>))=n-2.定理3.2.1當n≥6時,σ(K<,n,n>-E(nK<,2>))=2n-3,ζ(K<,n,n>-E(nK<,2>))=2n-5.定理4.1.1對s≥r,ρ(K<,r,s>)=0,s>r=1,或s=r=2,或s>3r-4(r≥2),或3r

5、-4≥s>2r-1,s是偶數,或(5/2)r≤s≤3r-4,s是奇數且5 |s,r,r≤s≤2r-1(r≠2)或s=2r+1(r≥5),0或r,2r+3≤s<(5/2)r,s是奇數,或(5/2)r≤s≤3r-4,s是奇數且不能被5整除.定理4.2.1ρ(K<,n>-E(K<,r>))=0,r=n或r=n-1(n≥3).=1,r=1,2 ≤n≤3.=n,r=1,n≥4.=r,n/2≤r≤n-3.=r-1,r=n-2≥3.∈[n-1,2(n

6、-r)],2≤r且所有算術運算均取模m(≥|S|)的和圖.一個圖G的模整和數ψ(G)是使得G U ψK<,1>是模整和圖的孤立點數ψ的最小值.引理5.1.1對任意的圖G,若不存在度為|V(G)|-1的頂點,則ψ(G)=ρ(G).定理5.1.1對任意的圖G,有ψ(G)≤ ζ(G).定理5.1.2對任意的圖G,若不存在度為|V(G)

7、|-1的頂點或者ζ(G)≠0,則ρ(G)≤ζ(G).推論5.1.1對滿足s≥r和r+s≥3的完全二分圖K<,r,s>有ψ(K<,r,s>)=ρ(K<,r,s>).推論5.1.2ψ(K<,n,n>-E(nK<,2>))=ρ(K<,n,n>-E(nK<,2>)).推論5.1.3扇F<,n>是模整和圖.推論5.1.4輪W<,n>是模整和圖.定理5.2.1ψ(K<,n>-E(K<,r>))=0,r≥n-3,或r=1,或n-r | r.=r,n/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論