基于人工螢火蟲(chóng)算法優(yōu)化gm(1,1)模型在變形監(jiān)測(cè)數(shù)據(jù)處理中的應(yīng)用研究_第1頁(yè)
已閱讀1頁(yè),還剩56頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 摘要 畢業(yè)論文題目:基于人工螢火蟲(chóng)算法優(yōu)化 GM(1 ,1)模型在變形監(jiān)測(cè)數(shù)據(jù)處 理中的應(yīng)用研究 大地測(cè)量學(xué)與測(cè)量工程專(zhuān)業(yè) 2010 級(jí)碩士生姓名 郭旭平 指導(dǎo)教師(姓名、職稱(chēng)) : 吳良才 教授

2、 摘 要 目前,如何實(shí)時(shí)、科學(xué)、準(zhǔn)確地分析和預(yù)報(bào)建筑物、構(gòu)筑物的變形,已成為科學(xué)研究以及指導(dǎo)實(shí)踐的一個(gè)重大課題。本文通過(guò)變形監(jiān)測(cè)數(shù)據(jù)處理及分析的預(yù)測(cè)模型——GM(1,1)模型的國(guó)內(nèi)外研究現(xiàn)狀,以及一種新型的智能優(yōu)化算法——人工螢火蟲(chóng)算法的國(guó)內(nèi)外的方研究現(xiàn)狀,搜集大量資料,對(duì)比分析,構(gòu)思自己研究的方法,采用人工螢火蟲(chóng)算法將灰色GM(1,1)模型進(jìn)行優(yōu)化,應(yīng)用于變形監(jiān)測(cè)預(yù)報(bào)與分析工作中,其主要研究?jī)?nèi)容包括:

3、本文利用最小一乘法建立目標(biāo)函數(shù),再通過(guò)人工螢火蟲(chóng)算法優(yōu)化,求解目標(biāo)函數(shù),從而使GM(1,1)模型得到優(yōu)化,隨后給出了優(yōu)化模型的實(shí)施步驟以及基本流程。在對(duì)預(yù)測(cè)效果檢驗(yàn)時(shí),用該優(yōu)化模型計(jì)算參考文獻(xiàn)里數(shù)據(jù),并與文獻(xiàn)中的其它模型相比較,證明優(yōu)化模型的可行性及優(yōu)越性。把人工螢火蟲(chóng)算法優(yōu)化的GM(1,1)模型應(yīng)用到變形監(jiān)測(cè)中,對(duì)沉降數(shù)據(jù)進(jìn)行處理、分析。并從殘差、相對(duì)誤差、發(fā)展系數(shù)、后驗(yàn)方差值c四個(gè)方面比較和驗(yàn)證優(yōu)化模型,利用實(shí)驗(yàn)結(jié)果證明研究方法的可

4、行性,優(yōu)化模型的優(yōu)越性。實(shí)例結(jié)果顯示,人工螢火蟲(chóng)算法優(yōu)化的GM(1,1)模型在殘差、相對(duì)誤差、發(fā)展系數(shù)、后驗(yàn)方差值c等方面的確優(yōu)越GM(1,1)模型,本文采用的模型進(jìn)一步擴(kuò)大了灰色GM(1,1)模型應(yīng)用的范圍。 關(guān)鍵詞: 關(guān)鍵詞:變形監(jiān)測(cè);灰色系統(tǒng)理論;人工螢火蟲(chóng)算法;GM(1,1)模型;最小一乘法 Abstract THESIS: Based on glowworm swarm optimization GM (1, 1) mode

5、l Settlement data application study in Settlement Monitoring SPECIALIZATION: Geodesy and Survey Engineering POSTGRADUATE: Xuping-Guo

6、 MENTOR: Professor Liangcai-WU Abstract Nowadays, how can real-timely, scientifically and accurately analysis and forecasting in the deformation

7、 of buildings, and structures. It has become a major topic in the practice of scientific research and guidance. In this paper, deformation monitoring data processing and analysis , prediction model- GM (1,1) model resear

8、ch status at home and abroad as well as a new type of intelligent optimization algorithm-glowworm swarm optimization square Research,collect large amounts of data , comparative analysis .the glowworm swarm optimization o

9、f gray GM (1,1) model is applied to deformation monitoring and forecasting and analysis, it mainly includes, as the follows: This article builds objective function with the Logarithm solves the objective function with th

10、e glowworm swarm optimization. So that the GM (1,1) model has been optimized. At the same time, it given the implementation steps as well as the basic processes of the optimization model .Tested the predicted effect, the

11、 optimization model for calculating the reference literature data and compared with other models in the literature, to prove the feasibility and superiority of the optimization model. After the GM (1,1) model of the glow

12、worm swarm optimization is applied to the deformation monitoring, on settlement data processing, analysising.From the residuals, the relative error, the development coefficient the posterior variance c value of the four

13、aspects of comparison and verification optimization model, which showed the superiority of the optimization model. The experimental results show the feasibility of the research methods, indicating the superiority of the

14、optimization model. The results of examples show glowworm swarm optimization optimized GM (1,1) model is indeed superior in terms of residuals , relative error , the coefficient of development , after the prescription di

15、fference c in the GM (1,1) model , The model used in this paper expand the range of gray GM (1,1) model application . Keywords: deformation monitoring, gray system theory, GM (1,1) model, logarithm, glowworm swarm optimi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論