版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、ConvolutionalNeuralwksfSentenceClassificationYoonKimNewYkUniversitybstractWereptonaseriesofexperimentswithconvolutionalneuralwks(CNN)trainedontopofpretrainedwdvectsfsentencelevelclassificationtasks.WeshowthatasimpleCNNwi
2、thlittlehyperparametertuningstaticvectsachievesexcellentresultsonmultiplebenchmarks.Learningtaskspecificvectsthroughfinetuningoffersfurthergainsinperfmance.Weadditionallyproposeasimplemodificationtothearchitecturetoallow
3、ftheuseofbothtaskspecificstaticvects.TheCNNmodelsdiscussedhereinimproveuponthestateofthearton4outof7taskswhichincludesentimentanalysisquestionclassification.1IntroductionDeeplearningmodelshaveachievedremarkableresultsinc
4、omputervision(Krizhevskyetal.2012)speechrecognition(Gravesetal.2013)inrecentyears.Withinnaturallanguageprocessingmuchofthewkwithdeeplearningmethodshasinvolvedlearningwdvectrepresentationsthroughneurallanguagemodels(Bengi
5、oetal.2003Yihetal.2011Mikolovetal.2013)perfmingcompositionoverthelearnedwdvectsfclassification(Collobertetal.2011).Wdvectswhereinwdsareprojectedfromasparse1ofVencoding(hereVisthevocabularysize)ontoalowerdimensionalvectsp
6、aceviaahiddenlayerareessentiallyfeatureextractsthatencodesemanticfeaturesofwdsintheirdimensions.Insuchdenserepresentationssemanticallyclosewdsarelikewiseclose—ineuclideancosinedistance—inthelowerdimensionalvectspace.Conv
7、olutionalneuralwks(CNN)utilizelayerswithconvolvingfiltersthatareappliedtolocalfeatures(LeCunetal.1998).iginallyinventedfcomputervisionCNNmodelshavesubsequentlybeenshowntobeeffectivefNLPhaveachievedexcellentresultsinseman
8、ticparsing(Yihetal.2014)searchqueryretrieval(Shenetal.2014)sentencemodeling(Kalchbrenneretal.2014)othertraditionalNLPtasks(Collobertetal.2011).InthepresentwkwetrainasimpleCNNwithonelayerofconvolutionontopofwdvectsobtaine
9、dfromanunsupervisedneurallanguagemodel.ThesevectsweretrainedbyMikolovetal.(2013)on100billionwdsofGoogleNewsarepubliclyavailable.1Weinitiallykeepthewdvectsstaticlearnonlytheotherparametersofthemodel.Despitelittletuningofh
10、yperparametersthissimplemodelachievesexcellentresultsonmultiplebenchmarkssuggestingthatthepretrainedvectsare‘universal’featureextractsthatcanbeutilizedfvariousclassificationtasks.Learningtaskspecificvectsthroughfinetunin
11、gresultsinfurtherimprovements.Wefinallydescribeasimplemodificationtothearchitecturetoallowftheuseofbothpretrainedtaskspecificvectsbyhavingmultiplechannels.OurwkisphilosophicallysimilartoRazavianetal.(2014)whichshowedthat
12、fimageclassificationfeatureextractsobtainedfromapretraineddeeplearningmodelperfmwellonavarietyoftasks—includingtasksthatareverydifferentfromtheiginaltaskfwhichthefeatureextractsweretrained.2ModelThemodelarchitectureshown
13、infigure1isaslightvariantoftheCNNarchitectureofCollobertetal.(2011).Letxi∈Rkbethekdimensionalwdvectcrespondingtotheithwdinthesentence.Asentenceoflengthn(paddedwhere1:code.pwd2vecarXiv:1408.5882v2[cs.CL]3Sep2014DataclN|V|
14、|Vpre|TestMR220106621876516448CVSST15181185517836162622210SST2219961316185148381821Subj223100002132317913CVTREC610595295929125500CR219377553405046CVMPQA231060662466083CVTable1:Summarystatisticsfthedatasetsaftertokenizati
15、on.c:Numberoftargetclasses.l:Averagesentencelength.N:Datasetsize.|V|:Vocabularysize.|Vpre|:Numberofwdspresentinthesetofpretrainedwdvects.Test:Testsetsize(CVmeanstherewasnostardtraintestsplitthus10foldCVwasused).3Datasets
16、ExperimentalSetupWetestourmodelonvariousbenchmarks.Summarystatisticsofthedatasetsareintable1.?MR:Moviereviewswithonesentenceperreview.Classificationinvolvesdetectingpositivenegativereviews(PangLee2005).3?SST1:StanfdSenti
17、mentTreebank—anextensionofMRbutwithtraindevtestsplitsprovidedfinegrainedlabels(verypositivepositiveneutralnegativeverynegative)relabeledbySocheretal.(2013).4?SST2:SameasSST1butwithneutralreviewsremovedbinarylabels.?Subj:
18、Subjectivitydatasetwherethetaskistoclassifyasentenceasbeingsubjectiveobjective(PangLee2004).?TREC:TRECquestiondataset—taskinvolvesclassifyingaquestioninto6questiontypes(whetherthequestionisaboutpersonlocationnumericinfma
19、tionetc.)(LiRoth2002).5?CR:Customerreviewsofvariousproducts(camerasMP3setc.).Taskistopredictpositivenegativereviews(HuLiu2004).63:www.cs.cnell.edupeoplepabomoviereviewdata4:nlp.stanfd.edusentimentDataisactuallyprovidedat
20、thephraselevelhencewetrainthemodelonbothphrasessentencesbutonlysceonsentencesattesttimeasinSocheretal.(2013)Kalchbrenneretal.(2014)LeMikolov(2014).Thusthetrainingsetisanderofmagnitudelargerthanlistedintable1.5:cogcomp.cs
21、.illinois.eduDataQAQC6:www.cs.uic.edu~liubFBSsentimentanalysis.html?MPQA:OpinionpolaritydetectionsubtaskoftheMPQAdataset(Wiebeetal.2005).73.1HyperparametersTrainingFalldatasetsweuse:rectifiedlinearunitsfilterwindows(h)of
22、345with100featuremapseachoutrate(p)of0.5l2constraint(s)of3minibatchsizeof50.ThesevalueswerechosenviaagridsearchontheSST2devset.Wedonototherwiseperfmanydatasetspecifictuningotherthanearlystoppingondevsets.Fdatasetswithout
23、astarddevsetweromly10%ofthetrainingdataasthedevset.TrainingisdonethroughstochasticgradientdescentovershuffledminibatcheswiththeAdadeltaupdaterule(Zeiler2012).3.2PretrainedWdVectsInitializingwdvectswiththoseobtainedfroman
24、unsupervisedneurallanguagemodelisapopularmethodtoimproveperfmanceintheabsenceofalargesupervisedtrainingset(Collobertetal.2011Socheretal.2011Iyyeretal.2014).Weusethepubliclyavailablewd2vecvectsthatweretrainedon100billionw
25、dsfromGoogleNews.Thevectshavedimensionalityof300weretrainedusingthecontinuousbagofwdsarchitecture(Mikolovetal.2013).Wdsnotpresentinthesetofpretrainedwdsareinitializedromly.3.3ModelVariationsWeexperimentwithseveralvariant
26、softhemodel.?CNNr:Ourbaselinemodelwhereallwdsareromlyinitializedthenmodifiedduringtraining.?CNNstatic:Amodelwithpretrainedvectsfromwd2vec.Allwds—includingtheunknownonesthatarerandomlyinitialized—arekeptstaticonlytheother
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2015-1503.04069
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學(xué)試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當(dāng)下中國電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國際私法司考真題及解析
- 2010-2016生命科學(xué)技術(shù)學(xué)院獲獎情況
- 國產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語二歷年真題及答案解析
- 次北固山下-++中考古詩賞析要點解析++2010-2016
- 北京大學(xué)社會工作考研真題2010-2016
- 2010-2016年考研英語二歷年真題及答案解析(完整版)
- 新浪網(wǎng)2010-2016年性工作者媒介形象研究.pdf
評論
0/150
提交評論