版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、LSTM:ASearchSpaceOdysseyKlausGreffRupeshKumarSrivastavaJanKoutn?kBasR.SteunebrinkJurgenSchhubereSwissAILabIDSIAIstitutoDalleMollediStudisull’IntelligenzaArtificialeUniversit`adellaSvizzeraitaliana(USI)Scuolauniversitaria
2、professionaledellaSvizzeraitaliana(SUPSI)Galleria26928MannoLuganoSwitzerlAbstractSeveralvariantsoftheLongShtTermMemy(LSTM)architecturefrecurrentneuralwkshavebeenproposedsinceitsinceptionin1995.Inrecentyearsthesewkshavebe
3、comethestateoftheartmodelsfavarietyofmachinelearningproblems.ThishasledtoarenewedinterestinunderstingtheroleutilityofvariouscomputationalcomponentsoftypicalLSTMvariants.Inthispaperwepresentthefirstlargescaleanalysisofeig
4、htLSTMvariantsonthreerepresentativetasks:speechrecognitionhwritingrecognitionpolyphonicmusicmodeling.ThehyperparametersofallLSTMvariantsfeachtaskwereoptimizedseparatelyusingromsearchtheirimptancewasassessedusingthepowerf
5、ulfANOVAframewk.Intotalwesummarizetheresultsof5400experimentalruns(≈15yearsofCPUtime)whichmakesourstudythelargestofitskindonLSTMwks.OurresultsshowthatnoneofthevariantscanimproveuponthestardLSTMarchitecturesignificantlyde
6、monstratethefgetgatetheoutputactivationfunctiontobeitsmostcriticalcomponents.Wefurtherobservethatthestudiedhyperparametersarevirtuallyindependentderiveguidelinesftheirefficientadjustment.1.IntroductionRecurrentneuralwksw
7、ithLongShtTermMemy(whichwewillconciselyrefertoasLSTMs)haveemergedasaneffectivescalablemodelfseverallearningproblemsrelatedtosequentialdata.Earliermethodsfattackingtheseproblemswereusuallyhdesignedwkaroundstodealwiththese
8、quentialnatureofdatasuchaslanguageaudiosignals.SinceLSTMsareeffectiveatcapturinglongtermtempaldependencieswithoutsufferingfromtheoptimizationhurdlesthatplaguesimplerecurrentwks(SRNs)(Hochreiter1991Bengioetal.1994)theyhav
9、ebeenusedtoadvancethestateoftheartfmanydifficultproblems.Thisincludeshwritingrecognition(Gravesetal.2009Phametal.2013Doetschetal.2014)generation(Gravesetal.2013)languagemodeling(Zarembaetal.2014)translation(Luongetal.201
10、4)acousticmodelingofspeech(Saketal.2014)speechsynthesis(Fanetal.2014)proteinsecondarystructureprediction(Snderby1997).HoweverLSTMsarenowappliedtomanylearningproblemswhichdiffersignificantlyinscalenaturefromtheproblemstha
11、ttheseimprovementswereinitiallytestedon.AsystematicstudyoftheutilityofvariouscomputationalcomponentswhichcompriseLSTMs(seeFigure1)wasmissing.ThispaperfillsthatgapsystematicallyaddressestheopenquestionofimprovingtheLSTMar
12、chitecture.WeevaluatethemostpopularLSTMarchitecture(vanillaLSTMSection2)eightdifferentvariantsthereofonthreebenchmarkproblems:acousticmodelinghwritarXiv:1503.04069v1[cs.NE]13Mar2015LSTM:ASearchSpaceOdysseynectionswasd.Th
13、usthatstudydidnotusetheexactgradientftraining.Anotherfeatureofthatversionwastheuseoffullgaterecurrencewhichmeansthatallthegatesreceivedrecurrentinputsfromallgatesattheprevioustimestepinadditiontotherecurrentinputsfromthe
14、blockoutputs.Thisfeaturedidnotappearinanyofthelaterpapers.3.2.FgetGateThefirstpapertosuggestamodificationoftheLSTMarchitectureintroducedthefgetgate(Gersetal.1999)enablingtheLSTMtoresetitsownstate.Thisallowedlearningofcon
15、tinualtaskssuchasembeddedRebergrammar.3.3.PeepholeConnectionsGers&Schhuber(2000)arguedthatindertolearnprecisetimingsthecellneedstocontrolthegates.Sofarthiswasonlypossiblethroughanopenoutputgate.Peepholeconnections(connec
16、tionsfromthecelltothegatesblueinFigure1)wereaddedtothearchitectureindertomakeprecisetimingseasiertolearn.AdditionallytheoutputactivationfunctionwasomittedastherewasnoevidencethatitwasessentialfsolvingtheproblemsthatLSTMh
17、adbeentestedonsofar.3.4.FullGradientThefinalmodificationtowardsthevanillaLSTMwasdonebyGraves&Schhuber(2005).Thisstudypresentedthefullbackpropagationthroughtime(BPTT)trainingfLSTMwkswiththearchitecturedescribedinSection2p
18、resentedresultsontheTIMITbenchmark.UsingfullBPTThadtheaddedadvantagethatLSTMgradientscouldbecheckedusingfinitedifferencesmakingpracticalimplementationsmereliable.3.5.OtherVariantsSinceitsintroductionthevanillaLSTMhasbeen
19、themostcommonlyusedarchitecturebutothervariantshavebeensuggestedtoo.BefetheintroductionoffullBPTTtrainingGersetal.(2002)utilizedatrainingmethodbasedonExtendedKalmanFilteringwhichenabledtheLSTMtobetrainedonsomepathologica
20、lcasesatthecostofhighcomputationalcomplexity.Schhuberetal.(2007)proposedusingahybridevolutionbasedmethodinsteadofBPTTftrainingbutretainedthevanillaLSTMarchitecture.Bayeretal.(2009)evolveddifferentLSTMblockarchitecturesth
21、atmaximizefitnessoncontextsensitivegrammars.Saketal.(2014)introducedalinearprojectionlayerthatprojectstheoutputoftheLSTMlayerdownbeferecurrentfwardconnectionsindertoreducetheamountofparametersfLSTMwkswithmanyblocks.Byint
22、roducingatrainablescalingparameterftheslopeofthegateactivationfunctionsDoetschetal.(2014)wereabletoimprovetheperfmanceofLSTMonanofflinehwritingrecognitiondataset.InwhattheycallDynamicCtexMemyOtteetal.(2014)improvedconver
23、gencespeedofLSTMbyaddingrecurrentconnectionsbetweenthegatesofasingleblock(butnotbetweentheblocks).Choetal.(2014)proposedasimplificationoftheLSTMarchitecturecalledGatedRecurrentUnit(GRU).Theyusedneitherpeepholeconnections
24、noutputactivationfunctionscoupledtheinputthefgetgateintoanupdategate.Finallytheiroutputgate(calledresetgate)onlygatestherecurrentconnectionstotheblockinput(Wz).Chungetal.(2014)perfmedaninitialcomparisonbetweenGRULSTMrept
25、edmixedresults.4.EvaluationSetupThefocusofourstudyistocomparedifferentLSTMvariantsnottoachievestateoftheartresults.Therefeourexperimentsaredesignedtokeepthesetupsimplethecomparisonsfair.ThevanillaLSTMisusedasabaselineeva
26、luatedtogetherwitheightofitsvariants.Eachvariantaddsremovesmodifiesthebaselineinexactlyoneaspectwhichallowstoisolatetheireffect.Threedifferentdatasetsfromdifferentdomainsareusedtoaccountfcrossdomainvariations.Sincehyperp
27、arameterspaceislargeimpossibletotraversecompletelyromsearchwasusedindertoobtainthebestperfminghyperparameters(Bergstra&Bengio2012)feverycombinationofvariantdataset.Thereafterallanalysesfocusedonthe10%bestperfmingtrialsfe
28、achvariantdataset(Section5.1)makingtheresultsrepresentativefthecaseofreasonablehyperparametertuningeffts.Romsearchwasalsochosenftheaddedbenefitofprovidingenoughdatafanalyzingthegeneraleffectofvarioushyperparametersonthep
29、erfmanceofeachLSTMvariant(Section5.2).4.1.DatasetsEachdatasetissplitintothreeparts:atrainingsetavalidationsetwhichisusedfearlystoppingfoptimizingthehyperparametersatestsetfthefinalevaluation.Detailsofpreprocessingfeachda
30、tasetareprovidedinthesupplementarymaterial.4.1.1.TIMITTheTIMITSpeechcpus(Garofoloetal.1993)islargeenoughtobeareasonableacousticmodelingbenchmarkfspeechrecognitionyetitissmallenoughtokeepalargestudysuchasoursmanageable.Ou
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2014-1408.5882v2
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學(xué)試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當(dāng)下中國電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國際私法司考真題及解析
- 2010-2016生命科學(xué)技術(shù)學(xué)院獲獎情況
- 國產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語二歷年真題及答案解析
- 次北固山下-++中考古詩賞析要點(diǎn)解析++2010-2016
- 北京大學(xué)社會工作考研真題2010-2016
- 2010-2016年考研英語二歷年真題及答案解析(完整版)
- 新浪網(wǎng)2010-2016年性工作者媒介形象研究.pdf
評論
0/150
提交評論