科技英語練習(xí)答案匯總_第1頁
已閱讀1頁,還剩116頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、1Unit1MathematicsPartIESTReadingReading1(article.cfmid=whatisrussellsparadoxSectionAPrereadingTaskWarmupQuestions:Wkinpairsdiscussthefollowingquestions.1.WhoisBertrRussellBertrArthurWilliamRussell(b.1872–d.1970)wasaBriti

2、shphilosopherlogicianessayistsocialcriticbestknownfhiswkinmathematicallogicanalyticphilosophy.Hismostinfluentialcontributionsincludehisdefenseoflogicism(theviewthatmathematicsisinsomeimptantsensereducibletologic)hisrefin

3、ingofthepredicatecalculusintroducedbyGottlobFrege(whichstillfmsthebasisofmostcontemparylogic)hisdefenseofneutralmonism(theviewthatthewldconsistsofjustonetypeofsubstancethatisneitherexclusivelymentalnexclusivelyphysical)h

4、istheiesofdefinitedeionslogicalatomism.Russellisgenerallyrecognizedasoneofthefoundersofmodernanalyticphilosophyisregularlycreditedwithbeingoneofthemostimptantlogiciansofthetwentiethcentury.2.WhatisRussell’sParadoxRussell

5、discoveredtheparadoxthatbearshisnamein1901whilewkingonhisPrinciplesofMathematics(1903).Theparadoxarisesinconnectionwiththesetofallsetsthatarenotmembersofthemselves.Suchasetifitexistswillbeamemberofitselfifonlyifitisnotam

6、emberofitself.Theparadoxissignificantsinceusingclassicallogicallsentencesareentailedbyacontradiction.Russellsdiscoverythuspromptedalargeamountofwkinlogicsettheythephilosophyfoundationsofmathematics.3.WhateffectdidRussell

7、’sParadoxhaveonGottlobFregg’ssystemAtfirstFregeobservedthattheconsequencesofRussell’sparadoxarenotimmediatelyclear.Fexample“Isitalwayspermissibletospeakoftheextensionofaconceptofaclassifnothowdowerecognizetheexceptionalc

8、asesCanwealwaysinferfromtheextensionofoneconcept’scoincidingwiththatofasecondthateveryobjectwhichfallsunderthefirstconceptalsofallsunderthesecondBecauseofthesekindsofwriesFregeeventuallyfeltfcedtoabonmanyofhisviews.4.Wha

9、tisRussell’sresponsetotheparadoxRussellsownresponsetotheparadoxcamewiththedevelopmentofhistheyoftypesin1903.ItwascleartoRussellthatsomerestrictionsneededtobeplacedupontheiginalcomprehension(abstraction)axiomofnaivesetthe

10、ytheaxiomthatfmalizestheintuitionthatanycoherentconditionmaybeusedtodetermineaset(class).Russellsbasic3Part2(Paras.25):TheeffectofRussell’sparadoxonGottlobFrege’ssystem.Para.2:Russell’sparadoxdealtaheavyblowtoFrege’satte

11、mptstodevelopafoundationfallofmathematicsusingsymboliclogic.Para.3:AnillustrationofRussell’sparadoxintermsofsetsPara.4:Contradictionfoundintheset.Para.5:FregenoticedthedevastatingeffectofRussell’sparadoxonhissysteminabil

12、itytosolveit.Part3(Paras.68):SolutionsofferedbymathematicianstoRussel’sparadoxPara.6:Russell’sownresponsetotheparadoxwithhis“theyoftypes.“Para.7:ZermelossolutiontoRussellsparadoxPara.8:Whatbecameoftheeffttodevelopalogica

13、lfoundationfallofmathematicsPart4(Para.9):CrespondencebetweenRussellFregeontheparadox2.Directions:Wkinpairsdiscussthefollowingquestions.1)WhatisthebasicideaofRussell’sparadox2)HowtoexplainRussell’sparadoxintermsofsets3)C

14、anyouexplainthecontradictionfoundinthesetsrelatedtoRussell’sparadox4)IsRussell’sownresponsetotheparadoxwkable5)DoyouknowZermeloFraenkelsetthey(open)3.Directions:Readthefollowingpassagecarefullyfillintheblankswiththewdsyo

15、u’velearnedinthetext.Russellsownresponsetotheparadoxcamewiththedevelopmentofhistheyoftypesin1903.ItwascleartoRussellthatsomerestrictionsneededtobeplacedupontheiginalcomprehension(abstraction)axiomofnaivesettheytheaxiomth

16、atfmalizestheintuitionthatanycoherentconditionmaybeusedtodetermineaset(class).Russellsbasicideawasthatreferencetosetssuchasthesetofallsetsthatarenotmembersofthemselvescouldbeavoidedbyarrangingallsentencesintoahierarchybe

17、ginningwithsentencesaboutindividualsatthelowestlevelsentencesaboutsetsofindividualsatthenextlowestlevelsentencesaboutsetsofsetsofindividualsatthenextlowestlevelsoon.Usingaviciouscircleprinciplesimilartothatadoptedbythema

18、thematicianHenriPoincarhisownsocalled“noclass“theyofclassesRussellwasabletoexplainwhytheunrestrictedcomprehensionaxiomfails:propositionalfunctionssuchasthefunction“xisaset“maynotbeappliedtothemselvessinceselfapplicationw

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論