肝硬化數(shù)據(jù)挖掘_第1頁
已閱讀1頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Comparison of AI Techniques for Prediction of Liver Fibrosisin Hepatitis Patients,Journal of Medical SystemJiajun Shi,Some explanations,Fibrosis - 纖維化Hepatitis - 肝炎Hepatitis B/C – 乙肝/丙肝Cirrhosis – 肝硬化Liver biops

2、ies - 活組織檢查Non-invasive techniques – 無創(chuàng)技術(shù)Serum markers – 血清標(biāo)記,Outline,IntroductionBackground: AI and CDSSNaïve Bayes Classifier (NBC) & Logistics RegressionHepatitis and Fibrosis StageAI Assisted Web-based

3、 Clinical Decision Support SystemFour MethodsResults and Diagnostic AccuracyConclusion,Introduction,One in twelve people have the Hepatitis B or Hepatitis C virusDiagnosis and treatment of this disease is guided by l

4、iver biopsies where a small amount of tissue is removed by a surgeon and examined by a pathologistDetermine the fibrosis stage from F0 (no damage) to F4 (cirrhosis),Risk and costly,Non-invasive techniques, with serum ma

5、rkers, imaging test, and genetic studies,Accuracy not achieved sufficient acceptance,Introduction,Non-invasive techniques, with serum markers, imaging test, and genetic studies,AI & CDSS,Knowledge of the level of liv

6、er damage in a patient withliver disease (particularly Hepatitis B and Hepatitis C) is acritical factor in determining the optimal course of treatmentand to measure the effectiveness of alternative treatments inpatie

7、nts.,Not accurate,Background of AI and CDSS,Artificial Intelligence and Data Mining techniques Include Neural Networks, Fuzzy Logic, Decision Trees, Bayesian Classifiers, Support Vector Machines, Genetic Algorithms and

8、Hybrid System,Clinical and Medical Decision Support SystemsSupport the process of discovering useful information in large clinical repositories They had done the system designed with neural networks and decision tree m

9、ethods because of their successful application in similar problem domains,Hepatitis and Fibrosis Stage,One in twelve people have the Hepatitis B or Hepatitis C virus,AI Assisted Web-based Clinical Decision Support System

10、,AI Assisted CDSS,AI techniquesResulting knowledge base,AI Assisted Web-based Clinical Decision Support System,Variables:,SerumMarkers,PatientsInfo,AI Assisted web-based Clinical Decision Support System,System inputs

11、& Outputs:,Four Methods,Paper ‘Advanced Decision Support for Complex Clinical Decisions’ Neural Networks, Decision TreesThis paperNaive Bayes and Log Regression,Method inputs:,Four Methods – Naïve bayes clas

12、sifier,The variation in mean values for two parameters (ABL and G-GL) are shown by fibrosis stage in the Figure.With this model, we can calculate the combined probability of each fibrosis stage then select the highest p

13、robable as our predicted result.,Four Methods - Logistics regression,Cross Validation and Diagnostic Accuracy,Cross Validation and Diagnostic Accuracy,Accuracy of Fibrosis Stage Predictions (424 patients),Predictive Sens

14、itivity and Specificity,Conclusion,The four artificial intelligence methods presented in this study showed some significant variability in accuracy, sensitivity, and specificity in predicting fibrosis stage in data on 42

15、4 hepatitis patients. Although neural network methods showed the highest sensitivity and specificity, their role is predicting the exact fibrosis stage was relatively poor. Logistic regression and naïve bayes meth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論