智能科學與技術(shù)外文翻譯_第1頁
已閱讀1頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  西安郵電大學</b></p><p>  畢 業(yè) 設(shè) 計(論 文)</p><p><b>  外文文獻翻譯</b></p><p>  院(系): 自動化學院 </p><p>  專 業(yè): 智能科學與技術(shù)

2、 </p><p>  班 級: 智能0801班 </p><p>  學生姓名: 萬云艷 </p><p>  導師姓名: 韓中 職稱: 講師 </p><p>  起止時間:2012年 3月8日 至 20

3、12年 6月20日</p><p><b>  英文原文</b></p><p>  298 SHEARD AND MOSTASHARI</p><p>  Table I. Complex System Examples</p><p>  Systems Engineering DOI 10.1002/sy

4、s</p><p>  PRINCIPLES OF COMPLEX SYSTEMS FOR SYSTEMS ENGINEERING 299</p><p>  reason all should be amenable to improvement based on the principles for engineering complex systems addressed

5、in later sections. Systems engineers should be familiar with the three examples:</p><p>  ?·INCOSE </p><p>  ·The systems engineering (SE) process within a company </p><p&g

6、t;  ·The National Airspace System (air traffic control system). </p><p>  Table I shows that all three examples have all complex systems attributes listed above and therefore that these are complex syst

7、ems.</p><p>  3.2. Systems-of-Systems</p><p>  It should be noted that Systems-of-Systems (SoSs) is currently of great interest to systems engineers. The topic was originally defined by [Maier,

8、1998]; confer-ences and papers addressing systems-of-systems have increased greatly in the last few years. Systems-of-sys-tems issues that differ from systems issues include:</p><p>  Integration of independ

9、ently-operational compo-nent systems that were built for other purposes </p><p>  ?Rapid evolution of both user needs and system technologies, which prevents stable requirements </p><p>  ?Mul

10、tiple disparate stakeholders with conflicting needs and a lack of incentives to participate in the system-of-systems </p><p>  ?Distributed development and its consequent com-munication problems </p>

11、<p>  Dependence on an integrated computing infra-structure that has extremely high and increasing complexity, thus threatening unintended conse-quences. </p><p>  In an engineering context, systems-of

12、-systems are often, but not always, complex systems. Figure 2 shows this comparison. Systems-of-systems usually come up in a program acquisition context, and are distinguished as being unmanageable using standard top-tow

13、n sys-tems engineering, whereas complex systems usually come up in an analytical or scientific context, and are described as being not decomposable.</p><p>  Most systems-of-systems are also complex systems

14、(CxSs) and vice versa; hence the two top circles overlap greatly. A system such as Joint Strike Fighter that is developed via a program manager and a chief engineer is by definition not a complex system (there are not in

15、dependent agents). However, it specifically is consid-ered a system-of-systems in some Defense Department work [Chairman, Joint Chiefs of Staff, 2007], although not according to the more generally accepted definition [DO

16、D AT&L, 200</p><p>  4. COMPLEX SYSTEMS SCIENCE INSIGHTS</p><p>  Complex systems science includes a number of current research areas all having to do in some ways with complexity, complex s

17、ystems, or nonlinear systems. Some examples include complexity theory, chaos the-ory, cellular automata, and nonlinear dynamics. Taken as a whole, these sciences offer the following insights, which have important systems

18、 engineering potential [Sheard, 2006]:</p><p>  Emergence: Emergence is related to the depend-ence of the whole on parts, the interdependence of parts, and specialization of parts. While study-ing the parts

19、in isolation does not work, the nature of complex systems can be probed by investigat-ing how changes in one part affect the others, and the behavior of the whole. </p><p>  Pattern formation: Simple mathema

20、tical mod-els capture pattern formation such as local activa-tion / long range inhibition. </p><p>  Multiple (meta-) stable states: Small displace-ments (perturbations) lead to recovery, and larger ones can

21、 lead to radical changes of properties. Dynamics do not average simply. </p><p>  Multiscale descriptions are needed to under-stand complex systems. Fine scales influence large scale behavior. </p>&l

22、t;p>  It is difficult but not impossible to answer the question “How complex is it?” </p><p>  Behavior (response) complexity: To describe the behavior of a system we try to describe the re-sponse functio

23、n: actions as a function of the en-vironment. However, unless simplifying assumptions are made, this requires an amount of information that grows exponentially with the complexity of the environment. </p><p>

24、;  Contrasts: Complex systems often exhibit con-trasting characteristics, including simplicity and complexity, order and disorder, random and pre-dictable behavior, repeating patterns and change.</p><p>  We

25、 cannot predict what a complex system will evolve into. </p><p>  The complex adaptive systems cycle, created by Gell-Mann [1994a], is shown in the first column of Table II. The other three columns show how

26、our exam-ple systems evolve in accordance with this cycle.</p><p>  The first step in the cycle is abstracting from the real world to a model. This involves a tradeoff between fine-graining and coarseness. T

27、he second step is iden-tifying regularities or patterns in the abstracted infor-mation. It is often difficult to sort out what is random from what is informative or patterns. The third step is organizing these regulariti

28、es into a schema. This essentially compresses the information into something sim-pler; how much compression is acceptable is a judg-ment call</p><p>  It is worthwhile to note that in explaining this cycle,

29、Dr. Gell-Mann [1994b] was concentrating on biological systems rather than on systems engineered by man, so the applicability of the cycle to man-made complex systems is suggestive of a general truth.</p><p>

30、  300 SHEARD AND MOSTASHARI</p><p>  Figure 2. Systems of systems compared to complex systems. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]</p&g

31、t;<p>  Table II. Complex Adaptive Systems Cycle Applied to Examples</p><p><b>  中文譯文</b></p><p>  298 謝爾德和莫斯塔沙瑞</p><p>  表格一:復雜系統(tǒng)的例子</p><p>  復雜系

32、統(tǒng)系統(tǒng)工程的原理 299</p><p>  原因都應(yīng)該服從改善為基礎(chǔ)的原則,在后面的章節(jié)中涉及的復雜的系統(tǒng)工程。系統(tǒng)工程師應(yīng)該熟悉的三個例子:</p><p><b>  ·國際系統(tǒng)工程協(xié)會</b></p><p>  ·在公司內(nèi)系統(tǒng)工程(SE)的過程</p><p>  ·國家空域系統(tǒng)(

33、空中交通管制系統(tǒng))。</p><p>  表一顯示,所有三個例子,所有復雜的系統(tǒng)屬性中列出以上,因此,這些都是復雜的系統(tǒng)。</p><p><b>  3.2.系統(tǒng)的系統(tǒng)</b></p><p>  應(yīng)當指出的系統(tǒng)系統(tǒng)(SOSS)是目前系統(tǒng)工程師的極大興趣。最初定義的主題[1998]邁爾;賦予差異和文件處理系統(tǒng)的系統(tǒng)已經(jīng)在過去幾年中大大增加。&

34、#160;SYS-TEMS系統(tǒng)的問題,從系統(tǒng)的問題不同,包括:</p><p>  獨立運作的組分NENT被用于其他目的的系統(tǒng)集成</p><p>  快速演變的用戶需求和系統(tǒng)技術(shù),從而防止了穩(wěn)定的需求</p><p>  矛盾需要多個不同的利益相關(guān)者和缺乏激勵機制,參與系統(tǒng)的系統(tǒng)</p><p>  分布式的發(fā)展和其隨后的通信問題</

35、p><p>  綜合計算基礎(chǔ)結(jié)構(gòu),具有極高的和日益復雜的依賴性,從而威脅的意外conse-序列。 在工程方面,往往是系統(tǒng)的系統(tǒng),但并不總是,復雜的系統(tǒng)。圖2顯示了這種比較。系統(tǒng)的系統(tǒng)通常會在收購方案方面,為無力,使用標準的頂級鎮(zhèn)SYS-TEMS工程,而復雜的系統(tǒng)通常在分析或科學方面的區(qū)別,不腐化。</p><p>  大多數(shù)系統(tǒng)的系統(tǒng)也復雜系統(tǒng)(CxSs),反之亦然,因此前兩個圓圈重疊大大。如

36、聯(lián)合攻擊戰(zhàn)斗機的系統(tǒng)開發(fā),通過項目經(jīng)理和總工程師,是不是一個復雜的系統(tǒng)(有沒有獨立的代理人)的定義。然而,它專門consid-ERED等效1系統(tǒng),系統(tǒng)在一些國防部署工作[主席,參謀長聯(lián)席會議,2007],雖然未按更普遍接受的定義[國防部的AT大號,2006],這是更為像梅爾定義。特設(shè)系統(tǒng),系統(tǒng)在長周期自上而下開發(fā)的系統(tǒng)相比,被拉到一起在最后一分鐘由操作人通道,并沒有首席系統(tǒng)集成商,也不是一個特定的發(fā)展時期[摩天輪,2006年]。這些最沒

37、有資格作為復雜的系統(tǒng)。復雜的系統(tǒng),包括大量的基本粒子,或者是不相關(guān)的,以工程的生物系統(tǒng)將不被視為系統(tǒng)的系統(tǒng)。</p><p>  4.科學洞察復雜系統(tǒng)復雜系統(tǒng)的性質(zhì),可以探測由investigat的一部分變化是如何影響他人,而全的行為。復雜系統(tǒng)科學包括了目前的研究領(lǐng)域都不必做某些方面的復雜性,復雜系統(tǒng),非線性系統(tǒng)的數(shù)量。一些例子包括復雜性理論,混亂理論,元胞自動機,非線性動力學。作為一個整體,這些科學提供了以下的

38、看法,其中有工程的重要系統(tǒng)的潛力[謝爾德,2006]: 興起的出現(xiàn),是取決于整個ENCE的部件,零件的相互依存關(guān)系,以及零件的??專業(yè)化。雖然學習ING在隔離的部分不起作用。</p><p>  格局的形成:簡單的數(shù)學模ELS捕捉格局的形成,如本地激活/抑制遠距離。 多(元)穩(wěn)定狀態(tài):小位移(擾動)導致的復蘇,并可能導致更大的徹底改變物業(yè)。動力學不要簡單平均</p><p>  多尺度

39、描述下復雜系統(tǒng)的需要。細密的鱗片影響大規(guī)模的行為。</p><p>  它是很難的,但不是不可能回答的問題“,它是多么復雜?”</p><p>  行為(響應(yīng))的復雜性:為了描述一個系統(tǒng),我們嘗試來形容再響應(yīng)函數(shù)的行為:作為一個功能的連接環(huán)境的行動。然而,除非作出簡化假設(shè),這需要一個信息量成倍增長與環(huán)境的復雜性。</p><p>  對比:復雜系統(tǒng)往往表現(xiàn)出CON-

40、trasting的特點,包括簡單和復雜性,秩序和無序,隨機行為,重復圖案和變化。</p><p>  我們無法預(yù)測什么將演變成一個復雜的系統(tǒng)。</p><p>  復雜自適應(yīng)系統(tǒng)循環(huán),由蓋爾曼創(chuàng)造的[1994a],在第一列的表二所示。其他三個列顯示我們的考試例如系統(tǒng)如何按照這個周期的演變。</p><p>  在循環(huán)的第一步是從現(xiàn)實世界的抽象模型。這涉及到一個精細的

41、木紋和粗糙之間的權(quán)衡。第二步是在抽象的信息信息的IDEN-tifying規(guī)律或模式。它往往是很難弄清楚什么是隨機的,什么是信息或圖案。第三步是組織架構(gòu)到這些規(guī)律。這實質(zhì)上是壓縮成SIM簡單的信息是判斷MENT通話的壓縮是可以接受的。第四步是確定這說明一些變化。在現(xiàn)有的復雜系統(tǒng)的分析,這可能意味著分組已經(jīng)注意到的變化。在創(chuàng)建復雜的系統(tǒng),這可以是故意,不同的元素。使用的模式是指驗證現(xiàn)實世界。最后,現(xiàn)實世界的壓力造成的圖式,在大多數(shù)情況下,最

42、有意義的選擇。</p><p>  值得一提的是,在解釋這個周期,蓋爾曼博士[1994b]對生物系統(tǒng),而不是集中在由人設(shè)計的系統(tǒng),所以周期的人造復雜系統(tǒng)的適用性,是一個普遍的真理暗示。</p><p>  300 謝爾德和莫斯塔沙瑞</p><p>  圖2。系統(tǒng)比較復雜的系統(tǒng)。[彩色圖,可以被視為在網(wǎng)上發(fā)行,這是在www.interscience.wiley

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論