外文翻譯----石油質(zhì)量在線監(jiān)控系統(tǒng)的設(shè)計與測試_第1頁
已閱讀1頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  畢業(yè)設(shè)計(論文)外文資料翻譯</p><p>  題 目: 石油質(zhì)量在線監(jiān)控系統(tǒng)的設(shè)計與測試 </p><p>  院系名稱: 專業(yè)班級: </p><p>  學生姓名: 學 號: </p>&

2、lt;p>  指導教師: 教師職稱: </p><p>  起止日期: 09.2.23—4.30地 點: 中心實驗樓 </p><p>  附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p>  附件1:外文資料翻譯譯文</p><p&

3、gt;  石油質(zhì)量在線監(jiān)控系統(tǒng)的設(shè)計與測試</p><p><b>  摘要</b></p><p>  本文總結(jié)了作者對石油質(zhì)量傳感器的應(yīng)用與測試。當機器處于高速運轉(zhuǎn)狀態(tài)時,燃油保持正常的流動性是至關(guān)重要的。因此在本文中,作者描述了石油感應(yīng)原理,而且在實踐中驗證了石油質(zhì)量傳感器自動檢測石油質(zhì)量的能力,并詳細而精確地對石油污染物進行了分類。該傳感器能進行流體檢測,能根

4、據(jù)化學規(guī)律對污染物進行分類,并能具體地估計污染物變化趨勢,實施更高層次的通信協(xié)議,從而最終檢測出石油的質(zhì)量或污染程度。正如作者測試時所做的一樣,石油質(zhì)量監(jiān)控系統(tǒng)的傳感器設(shè)計成一個能夠直接插入油管的塞子。作者還提出了對實驗方法、壓力反饋潤滑系統(tǒng)和預防污染的總體看法以及測試結(jié)果。同時作者對石油質(zhì)量檢測系統(tǒng)進行了為期6個月測試,并在石油的變質(zhì)界限下驗證了多個污染物的分類。</p><p>  關(guān)鍵詞:潤滑油污染,潤滑油

5、分析技術(shù),狀態(tài)監(jiān)測和內(nèi)燃機油,設(shè)備監(jiān)控</p><p><b>  導言</b></p><p>  狀態(tài)檢修(CBM)是一個新興的維修理念,其采用積極的監(jiān)測,以確定系統(tǒng)的組成部分以及運行是否正常,使根據(jù)診斷和預測剩余使用壽命去維修成為可能。CBM減少了生命周期維護成本,改善了系統(tǒng)的安全性,并增加了運行的可預見性。液壓機油、齒輪油、潤滑劑和其他正在使用的液態(tài)物在使用中

6、變質(zhì),是機器運行失常的共同原因之一,因此潤滑劑的質(zhì)量監(jiān)測是對CBM系統(tǒng)比較理想的補充。按照傳統(tǒng)方法,潤滑油的質(zhì)量監(jiān)測可以通過定期取樣、實驗室檢測或使用現(xiàn)場測試裝置分析完成。然而,這些分析方法比較費時、成本過高,誤差較大,而且有較長的滯后時間。其誤差可能的來源主要包括取樣位置、容器交叉污染以及測試方法的準確性。一個自動化、現(xiàn)場油質(zhì)量監(jiān)測系統(tǒng)能提供連續(xù)、實時的潤滑劑變質(zhì)信息,讓機器避免不必要的系統(tǒng)磨損,使維護時間間隔最佳化,并能盡早處理設(shè)備

7、問題。這些技術(shù)通過減少設(shè)備的停機時間,以及降低運營成本使利益最大化。</p><p>  一些方法能實現(xiàn)潤滑劑的實時監(jiān)測,但大部分方法主要針對三個主要的類型:質(zhì)量、殘渣和元素。其中有一種方法是使用元素的感應(yīng)原理檢測污染物,然而,這一技術(shù)在檢測粒徑在500μm以下的粒子時受到限制,這是由于粒子在不足5微米至20微米會造成的60%的發(fā)動機磨損。這種方法對燃料和水這樣的污染也是不敏感的,而這些污染普遍存在于柴油機系統(tǒng)中

8、并嚴重地降低潤滑劑的工作性能。由于存在大量處于失效模式的石油,使利用感應(yīng)技術(shù)測量石油導電率的技術(shù)受到限制,這是因為推測出油質(zhì)量的參數(shù)只有一個。其他不同于油的老化機理的檢測技術(shù)已經(jīng)發(fā)展起來,但無法檢測其他主要失效模式。還有一些檢測系統(tǒng)使用多個復雜的傳感器而且需要針對現(xiàn)有的油循環(huán)和診斷控制系統(tǒng)做一些有意義的修正,因此直接阻礙了這些方法在商業(yè)上的應(yīng)用。</p><p>  本文中所描述的智能型石油傳感器(SOS)能提供

9、在線、即時、低成本的石油質(zhì)量即時分析。本文的目的是論證SOS技術(shù)能克服上述以光譜學為基礎(chǔ)的寬頻阻抗分析技術(shù)中所具有的缺點。</p><p><b>  測量基礎(chǔ) </b></p><p>  智能型石油質(zhì)量檢測系統(tǒng)采用了正在申請專利的、低功率的寬頻阻抗測量技術(shù)以及使用多傳感器融合技術(shù)和模型分析軟件包,旨在預測流體質(zhì)量的變化。電氣化學的阻抗光譜學(EIS)方法,是將一個

10、復雜的交流信號加入寬頻光譜系統(tǒng)從而測量系統(tǒng)的響應(yīng),以確定石油的質(zhì)量。系統(tǒng)的阻抗是由所加的激勵信號和響應(yīng)信號之間的不同點決定的。通過掃描寬范圍的頻譜,傳感器獲得一個能比較好的反映石油實際阻抗的測量數(shù)據(jù)。科茲洛夫斯基等人用了一個相似的方法模擬細胞的電氣化學阻抗。通過發(fā)射一個寬頻信號,而非一個單信號,石油檢測系統(tǒng)在少于30秒內(nèi)能完成對石油的檢測。相比之下,傳統(tǒng)的EIS測量法需要50分鐘以上才能完成石油質(zhì)量檢測,因此這種在線檢測方法無法處理可能

11、在這段時間內(nèi)發(fā)生工藝參數(shù)變化的過程,另外,有害污染物的出現(xiàn)和石油基本原料以及添加劑的變質(zhì)通常也會引起油質(zhì)的變化。這些變化會影響油的介電性能、導電率、阻抗、電容和其他主要性能。SOS檢測系統(tǒng)使用對電化學的模擬來表現(xiàn)潤滑劑的阻抗響應(yīng),也使用基于模型的參數(shù)估計方法來鑒別樣品中所含的污染物。圖1顯示了在污染物不斷變化的條件下的基本電化學阻抗測量電路。</p><p>  圖1:智能型石油傳感器的原理圖</p>

12、<p>  智能型石油質(zhì)量傳感器的設(shè)計 </p><p>  智能型石油傳感器(圖2)是一個獨立的單元,包括敏感元件、信號調(diào)理、數(shù)據(jù)處理和通信模塊。電化學阻抗頻譜測量元件由二個均衡分離的同中心圓筒組成,傳感器采用頭形幾何形狀,以最大限度地提高樣品表面面積,同時盡量減少阻抗,以利于流體流動。SOS在信號條件和數(shù)據(jù)處理方面有一些特殊的功能,比如動態(tài)結(jié)構(gòu)增益和濾波器的選擇,檢測信號的發(fā)生,高速數(shù)據(jù)的獲取,

13、數(shù)據(jù)分析,以及外部通信等。</p><p>  圖2:智能型石油傳感器的實物圖</p><p>  目前傳感器的設(shè)計支持RS-232通信和控制器局域網(wǎng)(CAN)通信。通過這些接口,傳感器能對流體測量、傳感器狀態(tài)、配置信息以及軟硬件更新信息進行通信。包含CAN通信協(xié)議的支持能簡化并整合現(xiàn)有的檢測控制系統(tǒng)。</p><p>  在進行EIS測量之后,傳感器進行特征抽出和

14、分類,并運行一系列相關(guān)的運算法則,從而在收集的阻抗數(shù)據(jù)中篩選出流體的質(zhì)量信息。這一個步驟包括特征抽出和分類兩個過程。特征抽出是被用來估計電化學阻抗模型參數(shù)的方法,比如大阻抗和表面特性,由此產(chǎn)生的功能是提供一個阻抗測量和實際的流體特性變化之間的聯(lián)系。該傳感器的嵌入式處理器使用線性最小二乘擬合算法進行特征抽出,這種方法便于在嵌入式系統(tǒng)中實現(xiàn),而不會犧牲系統(tǒng)的性能和準確性。 </p><p>  作者利用他們的經(jīng)驗在多

15、傳感器數(shù)據(jù)融合、分類、數(shù)據(jù)挖掘等方面建立一個最符合應(yīng)用要求的實時、原位、獨立的傳感器分類器。作者嘗試用幾個基于線性判別分析、貝葉斯概率模型、強大的故障檢測與隔離方法以及神經(jīng)網(wǎng)絡(luò)的分類器體系結(jié)構(gòu)進行試驗。為了評價分類方法,作者考慮了數(shù)據(jù)集、所需的訓練樣本大小、分類準確性和執(zhí)行時間之間兼容性。貝葉斯概率分類器最適合這一特定應(yīng)用的要求,這是因為它能達到高精確度并能達到合理的效果。貝葉斯分類器適用于功能獨立的針對概率分布的假設(shè)。這個模型的特點是

16、采用了多元的、正常的概率密度函數(shù)并計算概率的每個特征向量。因此,根據(jù)貝葉斯定理,一個特征向量X =x和C =i可能屬于同一類,即:</p><p><b>  (1)</b></p><p> ?。ㄗⅲ涸谶@些變量中,大寫字母表示變量,而小寫字母表示當前值或觀察值)</p><p>  貝葉斯分類器使用了由特征向量賦予的后驗概率作為判別式,它能使

17、假設(shè)簡化,其功能是獨立的。因此,分類器使用了判別函數(shù):</p><p><b>  (2)</b></p><p>  分類器的體系結(jié)構(gòu)由燃料,水和煤煙確定,而石油包括三個層次,以此來利用從傳感器得到的實時數(shù)據(jù)和歷史分類。第一層和第二層貝葉斯分類器通過一個交叉耦合的體系結(jié)構(gòu)連接。這些交叉耦合的分類器由于搜索空間而發(fā)生振蕩,因為它們需要搜尋彼此間可以接受的分類。這樣一個

18、簡單的架構(gòu)降低了系統(tǒng)設(shè)計的復雜性,同時提高了分類的穩(wěn)定性和精確度。第三層更新了從歷史趨勢信息中預測的分類,因此,系統(tǒng)不會對污染物尖峰和異常測量反應(yīng)過度,從而防止了在污染物種類和水平中快速切換。</p><p><b>  分類精度</b></p><p>  分類器的性能往往被認為是使用了一個混合矩陣?;旌暇仃嚢嘘P(guān)實際情況的信息(估計),并預測所產(chǎn)生的分類方法?;?/p>

19、合矩陣是一個n×n大小的包含條件概率的隨機矩陣,而其每一個元素定義了其預測概率。因此,分類的精確度由以下方程給出:</p><p><b> ?。?)</b></p><p>  這種估計說明分類器有嚴重的誤差,這一點在該系統(tǒng)中是特別重要的。考慮到誤差的嚴重性,作者設(shè)計了一個低成本的精度估計方法,即從實際情況中反映距離對誤差的影響。作者還使用了硬度系數(shù)作為指

20、標,以評估分類器的性能。硬度系數(shù)糾正了分類器的估計值與真實值之間的誤差程度,并預測了可能發(fā)生意外的情況。在一個多級分類器中,式(4)給出了貝葉斯定理:</p><p><b> ?。?)</b></p><p>  在該式中,N是指總數(shù),和分別為混合矩陣中行和列的數(shù)值。 </p><p><b>  實驗評估</b><

21、;/p><p>  作者設(shè)計了一個的測試平臺,該測試平臺包含潤滑油在線流量的典型環(huán)境條件,用于測試SOS在一個復雜的環(huán)境中準確地檢測劣質(zhì)油的能力。測試平臺能模擬真實環(huán)境的壓力、溫度和流量情況,并提供了一種手段來執(zhí)行污染物的測試。SOS在測試平臺上在線測試油質(zhì),以探測和跟蹤MIL-PRF 9000H型潤滑劑中的水體污染,燃料稀釋情況和煙塵污染。在所有的測試中,傳感器頭部流速均為1.1米/秒(25 psi),并在172k

22、Pa(25磅),51.6℃(125°F)的環(huán)境條件下進行。 </p><p>  在第一階段的測試中,作者以單調(diào)遞增的方式在每種類型的污染物的變質(zhì)界限下使系統(tǒng)受到污染。作者定義變質(zhì)界限為:煙塵的質(zhì)量比為1%、燃料的體積比為5%、水的體積比為0.2%。在2-3小時內(nèi),把每種污染物緩慢加到測試平臺中并使污染物在平臺內(nèi)均勻分布,而且6個獨立測試的污染物是各不相同的。這種辦法表明,除了單一污染物的線性影響外,多

23、種污染物的共同作用和污染物之間的相互作用以及石油添加劑引起的非線性效應(yīng)也會對檢測結(jié)果造成影響。通過在幾個區(qū)域中的搜索空間(多污染物,低于變質(zhì)界限)中采集數(shù)據(jù)可以更容易地識別出以前未曾出現(xiàn)過的分類。 </p><p><b>  優(yōu)化策略</b></p><p>  作者分析了從上述檢測方法中收集的數(shù)據(jù)以檢驗分類器的性能和決定最佳分類策略,該分類策略確定了健康狀態(tài)時分類

24、器可以檢測到的最大變動。分類器的高分辨率可以檢測在健康狀況時的細微變化,這對用戶是非常有利的。然而,分類精度卻與分類策略成反比,因此,有必要權(quán)衡策略和準確性。 </p><p>  為了確定最佳的分析策略,作者將污染范圍劃分為10個級別和并對幾個預定的水平分類數(shù)據(jù)集的分類器性能進行了評估,但減少了分類準確性,而且導致策略的增加。雖然分類性能非常高(90%以上的準確度),但是,策略的缺失會使用戶的預見能力大大減弱。

25、由于只有健康、警告和危急三個狀態(tài),用戶無法預測何時污染程度將達到變質(zhì)界限。另外,每個污染物的8-10級分類在準確性上有一個顯著減少,而這使得用戶能預測傳感器輸出。由于這些原因,作者為石油潤滑油的多污染物分類選擇了每個污染物五級分類。 </p><p><b>  分類的精度評估 </b></p><p>  作者根據(jù)潤滑油系統(tǒng)測試平臺上收集的數(shù)據(jù)評估三個層次的貝葉斯分

26、類器的性能,評估了采用交叉驗證方法的分類器,并使用70%的數(shù)據(jù)進行分類,使用剩下的30%用于檢測。圖3顯示分類器的混合矩陣,在這個矩陣,行表示系統(tǒng)的實際分類(基于估計過的污染物),列表示分類的結(jié)果。對于一個理想的分類器,其混合矩陣應(yīng)該有取決于對角線的所有數(shù)值。錯誤分類表現(xiàn)為數(shù)值對混合矩陣對角線的偏離。正如圖3所示,分類器能非常準確地預測大多數(shù)分類。例如,SOS對石油的分類(行1)有95%的準確性。然而,對高污染燃料(行10),分類器只取

27、得61%的準確性。這主要是由于系統(tǒng)燃料污染敏感程度的限制,而且這是當前系統(tǒng)中所固有的,因此,高水平的其他類型的污染物分類會取代燃油污染物分類。</p><p>  圖3:分類器的混合矩陣</p><p>  SOS的實驗室測試結(jié)果</p><p>  作者進行了傳感器的驗證測試,他們在受污染的測試平臺與已知或未知的燃料、水和煙塵污染物中,定期對測試平臺上的樣品油進行

28、抽樣檢查,并將樣品進行了實驗室分析。測試需要2天時間,每一天開始時必須在測試平臺進行排水、清潔然后注滿。由此產(chǎn)生的實驗室分析報告證實,智能石油質(zhì)量檢測系統(tǒng)有檢測污染物和對多污染物同時進行檢測的能力。 </p><p>  獨立分析實驗室根據(jù)美國材料試驗學會(ASTM)D3524進行氣相色譜分析,以衡量燃料稀釋的程度。圖4表明,實驗室測量的實際的燃料水平在用高度準確性和一致性的傳感器預測的燃料稀釋范圍之間跳躍。注:

29、樣品標簽“A”指第1天的測試,“B”指第二天的測試。實際超出傳感器預測范圍的污染水平,遠不止一級。 SOS的取得了非常好的實驗結(jié)果,也有較好的誤差率(美國材料試驗學會標準規(guī)格的2%)。 </p><p>  圖4:使用氣相色譜分析進行燃料稀釋水平論證</p><p>  兩個獨立的實驗室使用庫侖卡爾.菲舍爾測試(美國ASTM D6304)對水濃度進行分析。圖5顯示了實驗室檢測的實際水污物水

30、平和SOS的分類范圍。該圖突出了可能發(fā)生在分析實驗室之間的變化。根據(jù)實驗室的報告,SOS的分類效果較好,但是實驗室環(huán)境的不一致導致結(jié)論的測量精度受到限制。實驗室之間的差異最有可能是由于校正鋅烷基二硫代磷酸(ZDDP)時不適當?shù)臏y量所造成的干擾。因為SOS依賴于實驗室分析,因此,分析方法和實驗室的選擇對傳感器的整體精度是至關(guān)重要的。 </p><p>  圖5: 使用卡爾.菲舍爾滴定進行水污染論證</p>

31、;<p>  作者還使用了兩個實驗室估計石油樣本中的煙塵水平(一個使用威爾克斯煙塵表,另一個使用FTIR分析),并且對SOS的預測結(jié)果進行比較。值得注意的是,這兩個實驗室實際報告的煙塵水平比實際值要低。 </p><p><b>  今后的工作 </b></p><p>  該傳感器證實了在測試平臺環(huán)境中檢測多種污染物的能力,作者所解決的幾個問題,將提高

32、該傳感器在商業(yè)上的成功。傳感器一些改進,如擴大檢測頻率范圍,改善溫度補償算法,提高了傳感器對特殊污染物的靈敏度,這些方法將提高分類器的精確度和分辨率。系統(tǒng)還可以做進一步改善,如減少電路規(guī)模,改善溫度的限制,并降低傳感器的尺寸大小,這樣,傳感器可以獲得更廣泛的應(yīng)用。 </p><p>  在應(yīng)用中,作者已經(jīng)將石油感應(yīng)能力擴展到其最初的工作中。傳感器所表現(xiàn)的性能非常好,能在變速箱系統(tǒng)中監(jiān)測水含量和潤滑油質(zhì)量。在柴油機

33、和變速箱中應(yīng)用傳感器的仿真測試將用于進一步驗證傳感器的功能,并檢測出其潛在的局限性。 </p><p><b>  結(jié)論 </b></p><p>  本文中作者介紹了智能石油質(zhì)量檢測技術(shù),采用寬帶光譜方法,電化學技術(shù),以及先進的多傳感器數(shù)據(jù)融合方法,從而設(shè)計出實時、內(nèi)置的石油質(zhì)量分析裝置。從6個月的連續(xù)測試和數(shù)據(jù)分析顯示出的結(jié)果表明,該分類器具有靈活性、魯棒性以及準

34、確性。試驗中還確定了需要改進的地方,以改善分類器的精確度和分辨率。在實驗室中對石油樣品的分析證實,智能石油質(zhì)量檢測裝置能夠探測和跟蹤的石油中的燃料、水和煙塵污染水平。進一步的試驗表明,SOS能適應(yīng)其他更廣范圍的污染。 </p><p>  作者還提供了額外的安裝和測試應(yīng)用方法,從而使石油質(zhì)量傳感器可以得到進一步的開發(fā)和驗證。這些評估,以及在專門的實驗室進行的地面實況數(shù)據(jù)收集,將提供一種手段去發(fā)展的石油質(zhì)量檢測技術(shù)

35、,并證明其有能力在這種環(huán)境中追蹤和預測石油污染。從根本上說,SOS技術(shù)提供了一個關(guān)鍵方法去實現(xiàn)有效的流體系統(tǒng)監(jiān)測,從而延長機器的壽命,盡量減少對環(huán)境的影響,并降低生命周期成本。 </p><p><b>  致謝 </b></p><p>  這一努力的部分工作,得到了海軍研究辦公室(美國海軍研究局)的支持。作者要感謝伊格納西奧.佩雷斯博士(美國海軍研究局)以及肯.斯

36、凱德爾,詹姆斯.蘇瓦松和維基.拉里莫爾(NSWC )的投入和支持。附件2:外文原文</p><p>  EXPERIENCES AND TESTING OF AN AUTONOMOUS ON-LINE OIL QUALITY MONITOR FOR DIESEL ENGINES</p><p><b>  Abstract </b></p><p&

37、gt;  The paper summarizes the author’s application and testing of an oil quality sensor for diesel engine applications. Maintaining healthy fluid systems is critical to keeping machinery in a high readiness state. The au

38、thors describe the oil sensing principles and recent experiences proving the sensor’s ability to autonomously assess oil quality and classify specific diesel oil contaminants. The sensor includes both analog and digital

39、electronics enabling the sensor to perform fluid interrogations, </p><p>  Key Words: Lubricant Contamination, Lubricant Analytical Techniques, Condition Monitoring, Internal Combustion Engine and Oils, Equi

40、pment Monitoring. </p><p>  Introduction </p><p>  Condition-based Maintenance (CBM), an emerging maintenance philosophy, employs active monitoring to determine the health of a component or syst

41、em and enables maintenance based upon the diagnosis and predicted remaining useful life. CBM provides the potential for reduced life cycle maintenance costs, improved safety, and increased operational readiness. Because

42、contamination and in-service degradation of hydraulic fluids, gear oils, lubricants, and other in-service fluids are among the most commo</p><p>  Several methods exist for real-time condition monitoring of

43、lubricants; most of these methods target one of three main categories: quality, debris, or elemental techniques. Several technologies employ inductive transducer elements to detect particle contamination. However, this t

44、echnology shows limited promise for particle sizes below 500μm, which is insufficient considering that particles between 5 and 20 microns cause 60% of all engine wear. This method is also insensitive to contaminations su

45、</p><p>  The Smart Oil SensorTM (SOS) described in this paper provides a real-time analysis of in-service fluids that is online, in-situ, real-time, and inexpensive. The goal of this paper is to demonstrate

46、 that the SOS technology overcomes the aforementioned drawbacks inherent in other oil analysis techniques by implementing a novel, broadband impedance spectroscopy based approach. The paper also presents the results of e

47、xtensive testing. </p><p>  Basis of Measurement </p><p>  The Smart Oil SensorTM system employs a patent-pending, low-powered, broadband impedance measurement coupled with multi-sensor fusion a

48、nd a model-based analysis package designed to be capable of predicting fluid quality and degradation for a range of fluid systems.</p><p>  The electrochemical impedance spectroscopy (EIS) approach involves

49、injecting a complex alternating current signal into a system over a wide frequency spectrum and measuring the system’s response to determine oil quality. The impedance of the system is determined by analyzing the differe

50、nces between the injection (excitation) and response signals. By scanning across a wide-range of frequencies, the sensor obtains a measurement that is rich with information and better reflects the actual impedance</p&

51、gt;<p>  Figure 1: Smart Oil Sensor Principle</p><p>  Smart Oil SensorTM Design </p><p>  The SOS (Figure 2) is a stand-alone unit that includes sensing element, signal conditioning, dat

52、a processing, and communications elements in an integrated package. The EIS measurement element is comprised of two concentric cylinders of uniform separation. The authors selected the sensor head geometry to maximize sa

53、mple surface area while minimizing impedance to fluid flow. The SOS houses signal conditioning and data processing electronics capable of functions such as dynamically reconfigurable g</p><p>  Figure 2: The

54、 Smart Oil Sensor?</p><p>  The current sensor design supports both RS-232 and Controller Area Network (CAN) communications. Through these interfaces, the sensor can communicate fluid measurements and sensor

55、 status or receive configuration and firmware updates. Including CAN protocol support simplifies integration into existing diagnostic and control systems. </p><p>  Feature Extraction and Classification Afte

56、r performing an EIS measurement, the sensor executes a series of algorithms to extract fluid quality information from the gathered impedance data. This process includes feature extraction and classification processes. Fe

57、ature extraction is the method used to estimate electrochemical impedance model parameters, such as bulk-resistivity and interfacial properties. The resulting features provide the link between an impedance measurement an

58、d actual fluid pro</p><p>  The authors leveraged their experiences in multi-sensor data fusion, classification, and data mining to build a classifier that best meets the application requirements for a real-

59、time, in-situ, stand-alone sensor. The authors experimented with several classifier architectures based on linear discriminant analysis, Bayesian probabilistic models, robust fault detection and isolation, and neural net

60、works. To evaluate the classifier methodologies, the authors considered compatibility with the data s</p><p><b> ?。?)</b></p><p>  A Bayes classifier uses the class posterior probabi

61、lities given by the feature vector as discriminant. A Na.ve Bayes classifier makes the simplifying assumption that the features are independent, given the class. Hence, the classifier uses the discriminant function: <

62、/p><p><b> ?。?)</b></p><p>  The classifier architecture selected for the identification of fuel, water, and soot within diesel oil consist of three tiers that utilize real-time data fr

63、om the sensors and historical classifications. The first and second tier Bayesian classifiers are connected through a cross-coupled architecture. These cross-coupled classifiers oscillate through the search space as they

64、 hunt for a mutually acceptable classification. Such a simple architecture decreases the complexity of the system design whi</p><p>  Methods of Determining Classifier Accuracy </p><p>  Classif

65、ier performance is often interpreted using a confusion matrix. A confusion matrix contains information about the actual (estimated) and predicted classifications generated by a classification system. The confusion matrix

66、 is a stochastic, n ×n sized matrix of conditional probabilities, where each of its elements ( pij ) defines its probability of predicting a class i given an example of an actual class j. Hence, the accuracy of the

67、classifier is given by the equation:</p><p><b>  (3)</b></p><p>  Such an estimate does nottake into account the error severity, which is particularly important in this application.

68、To account for error severity, the authors devised a cost-sensitive accuracy estimate that weighs each misclassification with a weighted coefficient ( wij ) that reflects the distance of the misclassification from the ac

69、tual class. </p><p>  The authors also used the Kappa coefficient as a metric to evaluate the classifier’s performance. The kappa corrects the degree of agreement between the classifier’s predictions and rea

70、lity by considering the proportion of predictions that might occur by chance. In a multi-class classifier, Eq. (4) gives the Fleiss’ kappa:</p><p><b> ?。?)</b></p><p>  where N is th

71、e total number of instances and xi. and xi are the column and row counts, respectively, of the confusion matrix.</p><p>  Experimental Evaluation</p><p>  The authors designed a lubrication test

72、 stand that recreates typical in-line flow environmental conditions to test the SOS’s ability to take accurate readings of contaminated oil in a dynamic environment. The test stand, replicates real-world pressure, temper

73、ature, and flow scenarios, and provides a means to perform seeded fault contamination testing. The SOS was tested inline on the test stand to detect and track water contamination, fuel dilution, and soot contamination in

74、 MIL-PRF 9000H lubric</p><p>  In the first phase of testing, the authors contaminated the system in a monotonically increasing manner up to the condemning limit of each type of contaminant. The test sponsor

75、 defined condemning limits as 1% soot by mass, 5% fuel by volume, and 2000 ppm (0.2%) water by volume. Slow addition of each contaminant to the test stand over a 2-3 hour period allowed for uniform distribution of the co

76、ntaminant within the test stand. six separate test sequences were performed in which the order of contam</p><p>  Determination of Optimum Resolution</p><p>  The authors analyzed the data colle

77、cted from the aforementioned test plan to verify the performance of the classifier and determine the optimal classification resolution. The resolution of the classifier determines the maximum change in health state that

78、the classifier can detect. A classifier with a high resolution can detect fine changes in the health state and is most beneficial to the user. However, classification accuracy is inversely proportional to classifier reso

79、lution. Thus, there is an</p><p>  To determine the optimum resolution, the authors divided the contamination range into 10 levels of resolution (N) and evaluated the performance of the classifier on several

80、 data sets for these predetermined levels. While classifier performance is very high (above 90% accuracy), for three classes per contaminant, the lack of resolution provides a user little prognostic capability. With only

81、 ‘healthy’, ‘warning’, and ‘critical’states, a user cannot predict when contamination levels will reach a co</p><p>  Evaluation of Classifier Accuracy </p><p>  The authors evaluated the perfor

82、mance of the three-tiered Bayesian classifier using data collected on the scaled lube system test stand. The authors evaluated the classifiers using a cross validation approach, which trains the classifier on 70% of the

83、data and uses the remaining 30% for testing. Figure 3 shows a confusion matrix for the classifier. In a confusion matrix, the rows indicate the actual classification of the system (based on estimated contamination) and t

84、he columns indicate the clas</p><p>  Figure 3: Confusion Matrix Showing Results with Correct and Incorrect Classifications</p><p>  Lab-based Verification of SOS Results </p><p>  

85、The project sponsors conducted a sensor verification test in which they contaminated the test stand with known as well as unknown levels of fuel, water, and soot contaminantion, sampled oil from the test stand at regular

86、 intervals, and dispatched the samples to a laboratory for analysis. Testing ran over a 2-day period and the test stand was drained, cleaned and refilled at the start of each day. The resulting laboratory analysis report

87、s confirmed the ability of the Smart Oil SensorTM to detect </p><p>  The independent analysis lab performed gas chromatography according to ASTM D3524 to measure fuel dilution. Figure 4 shows that the actua

88、l fuel levels measured by the lab fall between the fuel dilution bounds predicted by the sensor with a high level of accuracy and consistency. Note: Samples labeled as set ‘A’ denote day 1 of testing and set ‘B’ denote d

89、ay two. The actual contamination levels that fall outside of the predicted bounds were never off by more than one class. SOS results trend very</p><p>  Figure 4: Fuel Dilution Level Verification using Gas C

90、hromatography</p><p>  Two independent laboratories performed water concentration analyses using a coulometric Karl-Fischer test (ASTM D6304). Figure 5 shows the actual water contaminant level detected by th

91、e labs and the bounds of the SOS classification. The plot highlights the variability that can occur between analysis labs. The SOS classifications trend well with both lab reports; however, conclusions on measurement acc

92、uracy are limited by lab inconsistency. The discrepancy between the labs is most likely due to i</p><p>  The authors also employed two laboratories to estimate the soot levels in the oil samples (one using

93、Wilkes Soot meter and the other using FTIR analysis) and compared these to the SOS predicted results. Both labs actually reported significantly lower soot levels than were actually added. </p><p>  Figure 5:

94、 Water Contamination Verification using Karl Fischer Titration</p><p>  Future Work </p><p>  While the sensor demonstrated the capability of identifying and trending multiple contaminants in a

95、test stand environment, the authors are addressing several issues that will improve the commercial success of the sensor. Improvements such as expanding the interrogation frequency range, improving temperature compensati

96、on algorithms, and increasing the sensor’s sensitivity to particular contaminants will enhance classifier accuracy and resolution. Further improvements such as reducing electronics</p><p>  The authors have

97、already extended their initial work by employing the oil sensing capability in the applications shown in Table 1. Moving beyond diesel lubes, the sensor performs extremely well while monitoring water content and lubrican

98、t quality within gearbox systems. ‘Realworld’ application testing of the sensor in diesel and gearbox applications will be used to further verify the sensor’s capabilities and identify potential limitations. </p>

99、<p>  Conclusion </p><p>  In this paper, the authors describe the Smart Oil SensorTM technology that employs broadband spectroscopy approaches, electrochemical techniques, and advanced multi-sensor dat

100、a fusion methods to present a near real-time, inline oil analysis device. The results from the 6 months of continuous testing and data analysis demonstrate the flexibility and robustness of the classifier and highlight t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論