土建外文資料翻譯---迪拜塔工程世界的最高建筑_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  理工學院</b></p><p>  畢業(yè)設計(論文)外文資料翻譯</p><p>  學 院: 河北科技大學理工學院 </p><p>  專 業(yè): 土木工程 <

2、/p><p>  姓 名: xxx </p><p>  學 號: 08L1401329 </p><p>  外文出處: 2007年11月威力跨科學第二期 “高大的</p><p>  結構

3、設計和特殊的建筑” </p><p>  附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p>  附件1:外文資料翻譯譯文</p><p>  迪拜塔:工程世界的最高建筑(部分)</p><p>  所有的超高層建筑,困難結構工程問題需要處理和解決。本文就迪拜塔

4、的結構體系大概地介紹了一下。</p><p><b>  1、結構系統描述</b></p><p>  迪拜塔的目標不簡單的是世界的最高建筑,它是世界的最高愿望的體現。 上層建筑正在建造中,在2007年的夏天已經達到了135層。這個建筑最后的高度是一個“非常嚴守的秘密”。這個多功能的摩天大樓將超過當前509m(1671英尺)的臺北101大廈記錄保持者。這個28000㎡

5、(3000000英尺)的鋼筋混凝土多用塔將用于零售店、阿瑪尼酒店、住宅和辦公室。</p><p>  設計師故意塑造混凝土結構的迪拜塔——以“Y”的形狀計劃——是為了減少塔的風阻力和保持建筑的簡單施工性。這個結構系統可以描述為一個“支撐的核心”。每一個風翼,都有它自己的高性能走廊和核心柱,其他的柱子取決于六邊的中心核或者六角形中心,結果是使塔在橫向的和變形的地方都非常的堅硬。Owings & Merril

6、l(美國證券公司)應用一個嚴謹的幾何學于塔樓的中心對齊、墻和圓柱基礎。</p><p>  這棟樓后面的每一層都有一個螺旋梯的建設。這個塔樓交錯的網絡組織,例如建筑的踏步是由排成一行的柱子上的墻提供的負荷。這允許建筑的建設沒有與柱子移動有關系這方面的困難。</p><p>  這樣交錯的組織格局以致塔的每一個交錯處的寬度改變。踏步和形狀的優(yōu)勢形成了“迷惑風”,因為每層的風遇到不同的建筑形狀

7、,風渦流就不能到達各組織。</p><p>  塔和矮墻結構正在建造當中,這個建筑計劃在2008年竣工。</p><p><b>  2、結構分析和設計</b></p><p>  這個中心的六角鋼筋混凝土芯墻提供與封閉管和軸結構類似的抗扭強度。這個中心六角墻靠風墻和錘頭墻支撐,就像網絡和法蘭梁抵抗風切變和端矩。在機械板上的支架允許圓柱承受建筑

8、的橫向荷載;因此,所有縱向的混凝土是用來支撐重力和側向荷載。墻的優(yōu)勢來自于C80到C60強度的混凝土和普通的水泥、粉煤灰的利用。當地骨料被用于混凝土配合比設計。在90天的時間里,C80混凝土建造的結構較低的部分指定的是新的為43800N/(6350ksi)的彈性模量。墻和柱子的尺寸優(yōu)化利用虛擬工作/拉格朗日乘數法,結果出來一個非常堅固的結構。鋼筋混凝土結構是按照美國混凝土學會的318-02混凝土建筑規(guī)范要求設計的。</p>

9、<p>  墻厚和柱子的尺寸被精細的調節(jié)是為了減小組成建筑物的單個單元的漸變和收縮帶來的影響。為了減小微分柱縮短的影響,因為柱子周長和內墻之間的徐變,柱子的尺寸控制滿足自重應力的匹配列入內部走廊墻壁。支腿的五種集合,分布于建筑內,將所有垂直承載元素集合起來,進一步確保重力的統一,因此來減少微小的徐變。自混凝土在更薄的墻或柱上更快的收縮,周邊600mm厚的柱子與標準的走廊墻厚匹配(類似體積-到-表面比例)是為了確保柱和墻收縮與

10、混凝土收縮比例相同。</p><p>  塔樓最上面的部分由利用對角側向支撐體系的鋼架尖頂做成。鋼結構的塔尖是專為重力、風、地勢和軟化依照美國鋼結構協會荷載要求和鋼結構建筑設計規(guī)范的阻力系數(1999)設計的。外部暴露的鋼鐵用一種加混式貼合-實用鋁材保護完成。</p><p>  用8.4版的ETABS文件對結構作重力(包括P-△分析),風載,地震荷載分析。這個三維的有限元分析模型由鋼筋混

11、凝土墻、連梁、平板、筏板、樁和鋼筋尖頂系統組成(圖4)。完整的三維有限元分析模型由73500個殼體和75000個節(jié)點組成。在側向分荷載的作用下,結構的變形量通常低于一般標準。動態(tài)分析表明第一模式是周期為11.3s的側移。第二模式是周期為10.2s的垂直側移。扭轉是第五模式,周期為4.3s。</p><p>  這個鋼筋混凝結構的設計師根據ACI318-02(美國混凝土協會)的混凝土建筑規(guī)范要求。</p>

12、;<p>  迪拜市政局(DM)指定迪拜為一個UBC97加速度為2a的地震區(qū)(地震因數Z=0.15和土壤剖面)。地震分析包括一個特制的反應譜分析。典型的地震荷載不是支配整個鋼筋混凝土塔架結構的設計。地震荷載控制著鋼筋混凝土平臺建筑和鋼架塔的設計。</p><p>  Max Irvine博士(結構力學和動力學咨詢工程師,位于澳大利亞的悉尼)發(fā)展了定位地震報道的項目,其中包括一個地震危險性分析。潛在的

13、液化根據一些可接受的方法被研究;所以深層的塔基液化沒有被考慮。</p><p><b>  3、基礎和現場條件</b></p><p>  塔基是筏板基礎。這個堅固的鋼筋混凝土筏板有3.7m厚,由C50(強度)加強混凝土灌注(SCC)。除了標準的立方體測試,筏板混凝土在布局前由流動桌,實地測試。L-箱,V-箱和溫度。筏板分四塊區(qū)域進行灌注(三翼和中心)。每塊筏板的灌注

14、周期是24H。筏板間距一般為300mm,這樣的安排以至于每個方向的10條間距是被忽略的,導致一系列的“灌注加強條”貫穿筏板,在開口大小為600mm×600mm的地方,每隔一段時間進入完成混凝土澆注。</p><p>  塔的筏板基礎是3.7m(12英尺)厚,因此,除了耐久性,最高溫度限制也是非常重要的考慮因素。50Mpa的筏板混合物包含40%的粉煤灰和0.34的水灰比。筏板混凝土的巨大的安置測驗的立方體

15、,3.7m的一邊被灌注來查證安置測試程序和監(jiān)控混凝土溫度上升。在立方體試塊測驗中利用熱電偶,巖相分析后進行檢查。</p><p>  塔的筏板由194根現場澆注的樁支撐。這些樁的直徑為1.5m,大約有43m長,每隔樁的承受能力為3000噸,塔樁荷載試驗超過6000噸。C60混凝土的抗壓強度是利用聚合物漿通過用混凝土導管的方式來完成的。摩擦樁是石灰?guī)r自然地結合/保持石灰?guī)r的形態(tài),發(fā)展成最終的表面摩擦為250-350

16、Kpa(2.6-3.6噸/英尺)的樁。當鋼筋籠放入樁內時,特別要注意的是確定鋼筋籠的方向以保證鋼筋末端能夠穿過許多的鋼筋籠樁而不被擋斷,這樣可以大大的簡化筏板的建造。</p><p>  由于目前的情況極度地腐蝕地下水,擁有一個嚴謹的防腐措施來確?;A的耐久性是必須的。措施包括專業(yè)的防水系統,提高混凝土保護層,在混凝土中加入防腐劑,嚴格控制裂紋的設計標準,利用鈦網眼來外加電流陰極來保護系統。</p>

17、<p>  4、上層建筑混凝土技術</p><p>  混凝土垂直元素的設計師由在10小時允許建筑周期內的一個10Mpa的抗壓壓強決定的。為了允許建筑周期和設計強度/80Mpa/44Gpa的模數和確保足夠的可泵性和可操作性。迪拜周圍情況的不同,一個寒冷的冬天到極度熱的偶爾最高溫度達到50℃的夏天,為了適應不同強度發(fā)展和可操作性的損失,用量和延遲樓層建設時是為了適應不同的季節(jié)。</p>&

18、lt;p>  確?;炷帘盟瓦_到世界紀錄的高度可能是最困難的設計問題,特別是考慮到夏季氣溫高。四種單獨的能夠幫助改善泵站為建設的壓力越來越高的情況的基本混合物已經被開發(fā)出來。在2005年實施的橫向抽水試驗,相當于泵送到600m(1970英尺)高度的壓力損失,是為了決定這些混合物的泵送和建立摩擦系數。目前混凝土配合比為13的粉煤灰和10%的最大骨料粒徑為20mm(3/4英寸)的硅灰。這樣的混合實施上靠下降大約600mm(24英寸)來

19、達到自身加固,直到泵送壓力超過大約200磅才被使用。</p><p>  據設想,將其轉變?yōu)榛旌习?4mm的最大骨料粒徑和20%帶有自身加固特點的粉煤灰來維持所需的80MPa。在127層以上,結構需求減少至60MPa,混合10mm最大骨料也許就被使用了。高樓層的質量控制,是為了滿足確保泵送混凝土到高樓層的需求,特別是要考慮周圍的溫度。施工地點的水泵包含兩個世界上最大的,能泵送混凝土通過150mm管道而壓力達到大

20、規(guī)模的350磅。</p><p><b>  5、建設</b></p><p>  迪拜建設采用最新的建筑技術和材料技術,墻壁的形成采用的是SKE100自動自爬模系統。圓形鼻柱模是由鋼板支撐,以及樓板是在MevaDec模板上澆注而成。墻加固是在距地面8m處加鋼筋;以及快速布置。</p><p>  結構的施工程序是三個截面的中心核和平板成制品第

21、一;接著是羽翼塔和平板;在這之后是翅膀鼻柱和平板(圖1)?;炷镣ㄟ^特別制造的Putzmeister泵泵送,盡可能的一次泵送到600m(1970英尺)的高度,以及產生350磅的壓力。</p><p>  由于測量技術的限制,一個特別的GPS監(jiān)控系統被用來監(jiān)控結構的垂直性。這個測量工作由Doug Gayes先生指導,他是迪拜塔主要的測量師,是三星BeSix Arabtech合資公司的。</p><

22、;p><b>  6、結論</b></p><p>  完成之后,迪拜塔將成為世界最高建筑。它代表了一個在使用最新技術、材料和施工技術和方法方面的重大收獲。為了提供一個高效的、有理性的結構達到前所未見的高度。</p><p><b>  附件2:外文原文 </b></p><p>  BURJ DUBAI: ENGI

23、NEERING THE WORLD’S</p><p>  TALLEST BUILDING</p><p><b>  SUMMARY</b></p><p>  As with all super-tall projects, diffi cult structural engineering problems needed to be a

24、ddressed and resolved. This paper presents the approach to the structural system for the Burj Dubai Tower. </p><p>  1. STRUCTURAL SYSTEM DESCRIPTION</p><p>  The goal of the Burj Dubai Tower is

25、 not simply to be the world’s highest building; it’s to embody the world’s highest aspirations. The superstructure is currently under construction and as of summer 2007 has reached over 135 stories. The fi nal height of

26、the building is a ‘well-guarded secret’. The height of the multi-use skyscraper will ‘comfortably’ exceed the current record holder of the 509 m(1671 ft) tall Taipei 101. The 280 000 m2 (3 000 000 ft2) reinforced concret

27、e multi-use tower is util</p><p>  Designers purposely shaped the structural concrete Burj Dubai—‘Y’ shaped in plan—to reduce the wind forces on the tower, as well as to keep the structure simple and foster

28、constructability. The structural system can be described as a ‘buttressed’ core (Figures 1–3). Each wing, with its own high-performance concrete corridor walls and perimeter columns, buttresses the others via a six-sided

29、 central core, or hexagonal hub. The result is a tower that is extremely stiff laterally and torsionally. Sk</p><p>  Each tier of the building sets back in a spiral stepping pattern up the building. The set

30、backs are organized with the tower’s grid, such that the building stepping is accomplished by aligning columns above with walls below to provide a smooth load path. This allows the construction to proceed without the nor

31、mal diffi culties associated with column transfers.</p><p>  The setbacks are organized such that the tower’s width changes at each setback. The advantage of the stepping and shaping is to ‘confuse the wind’

32、. The wind vortexes never get organized because at each new tier the wind encounters a different building shape.</p><p>  The tower and podium structures are currently under construction (Figure 1) and the p

33、roject is scheduled for topping out in 2008.</p><p>  2. STRUCTURAL ANALYSIS AND DESIGN</p><p>  The center hexagonal reinforced concrete core walls provide the torsional resistance of the struc

34、ture similar to a closed tube or axle. The center hexagonal walls are buttressed by the wing walls and hammerhead walls, which behave as the webs and fl anges of a beam to resist the wind shears and moments. Outriggers a

35、t the mechanical fl oors allow the columns to participate in the lateral load resistance of the structure; hence, all of the vertical concrete is utilized to support both gravity and </p><p>  The wall thick

36、nesses and column sizes were fi ne tuned to reduce the effects of creep and shrinkage on the individual elements which compose the structure. To reduce the effects of differential column shortening, due to creep, between

37、 the perimeter columns and interior walls, the perimeter columns were sized such that the self-weight gravity stress on the perimeter columns matched the stress on the interior corridor walls. The fi ve sets of outrigger

38、s, distributed up the building, tie all the ve</p><p>  movements. Since the shrinkage in concrete occurs more quickly in thinner walls or columns, the perimeter column thickness of 600 mm (24 in.) matched t

39、he typical corridor wall thickness (similarvolume-to-surface ratios) (Figure 4b) to ensure the columns and walls will generally shorten at the same rate due to concrete shrinkage.</p><p>  The top section of

40、 the tower consists of a structural steel spire utilizing a diagonally braced lateral system. The structural steel spire was designed for gravity, wind, seismic and fatigue in accordance with the requirements of AISC Loa

41、d and Resistance Factor Design Specifi cation for Structural Steel Buildings (1999). The exterior exposed steel is protected with a fl ame-applied aluminum fi nish.</p><p>  The structure was analyzed for gr

42、avity (including P-Δ analysis), wind, and seismic loads using ETABS version 8·4. The three-dimensional analysis model consisted of the reinforced concrete walls, link beams, slabs, raft, piles, and the spire structu

43、ral steel system (Figure 4). The full 3D analysis model consisted of over 73 500 shells and 75 000 nodes. Under lateral wind loading, the building defl ections are well below commonly used criteria. The dynamic analysis

44、indicated the fi rst mode is lat</p><p>  The reinforced concrete structure was designed in accordance with the requirements of ACI 318–02 (American Concrete Institute) Building Code Requirements for Structu

45、ral Concrete.</p><p>  The Dubai Municipality (DM) specifi es Dubai as a UBC97 Zone 2a seismic region (with a seismic zone factor Z = 0·15 and soil profi le Sc). The seismic analysis consisted of a site

46、-specifi c response spectra analysis. Seismic loading typically did not govern the design of the reinforced concrete tower structure. Seismic loads did govern the design of the reinforced concrete podium buildings and th

47、e tower structural steel spire.</p><p>  Dr Max Irvine (with Structural Mechanics & Dynamics Consulting Engineers located in Sydney, Australia) developed site-specifi c seismic reports for the project, i

48、ncluding a seismic hazard analysis. The potential for liquefaction was investigated based on several accepted methods; it was determined that liquefaction is not considered to have any structural implications for the dee

49、p-seated tower foundations.</p><p>  3. FOUNDATIONS AND SITE CONDITIONS</p><p>  The tower foundations consist of a pile-supported raft. The solid reinforced concrete raft is 3·7 m (12 ft)

50、thick and was poured utilizing C50 (cube strength) self-consolidating concrete (SCC). In addition to the standard cube tests, the raft concrete was fi eld tested prior to placement by fl ow table (Figure 6), L-box, V-box

51、, and temperature. The raft was constructed in four separate pours (three wings and the center core). Each raft pour occurred over at least a 24-hour period. Reinforcement </p><p>  The tower raft is 3·

52、7 m (12 ft) thick and therefore, in addition to durability, limiting peak temperature was an important consideration. The 50 MPa raft mix incorporated 40% fl y ash and a water cement ratio of 0·34. Giant placement t

53、est cubes of the raft concrete, 3·7 m (12 ft) on a side (Figure 7) were test poured to verify the placement procedures and monitor the concrete temperature rise, utilizing thermal couples in the test cubes and later

54、 checked by petrographic analysis.</p><p>  The tower raft is supported by 194 bored cast-in-place piles. The piles are 1·5 m in diameter and approximately 43 m long, with a design capacity of 3000 tonn

55、es each. The tower pile load test supported over 6000 tonnes (Figure 8). The C60 (cube strength) SCC concrete was placed by the tremie method utilizing polymer slurry. The friction piles are supported in the naturally ce

56、mented calcisiltite/conglomeritic calcisiltite formations, developing an ultimate pile skin friction of 250–350 kPa (2·6–3</p><p>  Owing to the aggressive conditions present due to the extremely corros

57、ive ground water, a rigorous program of anti-corrosion measures was required to ensure the durability of the foundations. Measures implemented included specialized waterproofi ng systems, increased concrete cover, the ad

58、dition of corrosion inhibitors to the concrete mix, stringent crack control design criteria, and an impressed current cathodic protection system utilizing titanium mesh (Figure 9).</p><p>  4. SUPERSTRUCTURE

59、 CONCRETE TECHNOLOGY</p><p>  The design of the concrete for the vertical elements is determined by the requirements for a compressive strength of 10 MPa at 10 hours to permit the construction cycle and a de

60、sign strength/modulus of 80 MPa/44 GPa, as well as ensuring adequate pumpability and workability. The ambient conditions in Dubai vary from a cool winter to an extremely hot summer, with maximum temperatures occasionally

61、 exceeding 50 °C. To accommodate the different rates of strength development and workability loss, the </p><p>  Ensuring pumpability to reach world record heights is probably the most diffi cult concre

62、te design issue, particularly considering the high summer temperatures. Four separate basic mixes have been developed to enable reduced pumping pressure as the building gets higher. A horizontal pumping trial equivalent

63、to the pressure loss in pumping to a height of 600 m (1970 ft) was conducted in February 2005 to determine the pumpability of these mixes and establish the friction coeffi cients. The current</p><p>  It is

64、envisaged to change to a mix containing 14 mm maximum aggregate size and 20% fl y ash with full self-consolidating characteristics while maintaining the required 80 MPa. Above Level 127, the structural requirement reduce

65、s to 60 MPa, and a mix containing 10 mm maximum aggregate may be used. Extremely high levels of quality control will be required to ensure pumpability up to the highest concrete fl oor, particularly considering the ambie

66、nt temperatures. The pumps on site include two of the </p><p>  5. CONSTRUCTION</p><p>  The Burj Dubai utilizes the latest advancements in construction techniques and material technology. The w

67、alls are formed using Doka’s SKE 100 automatic self-climbing formwork system (Figure 19). The circular nose columns are formed with steel forms, and the fl oor slabs are poured on MevaDec formwork. Wall reinforcement is

68、prefabricated on the ground in 8 m sections to allow for fast placement.</p><p>  The construction sequence for the structure has the central core and slabs being cast fi rst, in three sections; the wing wal

69、ls and slabs follow behind; and the wing nose columns and slabs follow behind these (Figure 1). Concrete is pumped via specially developed Putzmeister pumps, able to pump to heights of 600 m (1970 ft) in a single stage a

70、nd generate 350 bar pressure.</p><p>  Due to the limitations of conventional surveying techniques, a special GPS monitoring system has been developed to monitor the verticality of the structure. The constru

71、ction survey work is being supervised by Mr Doug Hayes, Chief Surveyor for the Burj Dubai Tower, with the Samsung BeSix Arabtech JV. </p><p>  6. CONCLUSION</p><p>  When completed, the Burj Dub

72、ai Tower will be the world’s tallest structure. It represents a signifi cant achievement in terms of utilizing the latest design, materials, and construction technology and methods, in order to provide an effi cient, rat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論