連通圖中的可去邊及其算法分析.pdf_第1頁(yè)
已閱讀1頁(yè),還剩130頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、圖中可縮邊與可去邊是探討圖的結(jié)構(gòu),尋求使用歸納法證明圖的某些性質(zhì)的一個(gè)有利工具.W.T.Tutte在1961年給出3-連通圖的結(jié)構(gòu)特征定理時(shí),實(shí)際上用到了可去邊與可縮邊的存在性,Tutte給出了極為出色的3連通圖的結(jié)構(gòu)為:G時(shí)3連通圖當(dāng)且僅當(dāng)G是一個(gè)輪,或是從一個(gè)輪重復(fù)使用以下而種運(yùn)算推得的圖:(1).加邊;(2).拆點(diǎn)。證明了每個(gè)階大于或等于5的3-連通圖必有可縮邊,這是有關(guān)可去邊與可縮邊的最早的結(jié)果.Holton,.Jackson,

2、Wormald等在[3]中對(duì)3連通圖中可去邊的分布及數(shù)目進(jìn)行了探討.蘇健基在中得出了3連通圖中可去邊的下界,并描述了達(dá)到這一下界的圖的結(jié)構(gòu)特征.Fouquet,Thuiller和McCuaig在[5,17]中對(duì)3連通3正則圖中的可去邊進(jìn)行了研究。 尹建華在[2]中證明了4連通圖G(階數(shù)為5和6的2循環(huán)圖除外)中總存在可去邊,并且利用4連通圖存在可去邊與可收縮邊的事實(shí),證明了一個(gè)4連通圖總可以從一個(gè)2循環(huán)圖經(jīng)過(guò)以下步驟得到:(1)

3、.加邊;(2).拆點(diǎn);(3).加點(diǎn)去邊;(4).擴(kuò)點(diǎn)。 近二十多年來(lái),有關(guān)可去邊和可收縮邊的研究已經(jīng)有了很大進(jìn)展,許多文獻(xiàn)重點(diǎn)研究了一個(gè)圖中可縮邊與可去邊的數(shù)目. 本論文主要研究了圖論及其應(yīng)用中連通度方面的問(wèn)題,重點(diǎn)放在了3連通圖與4連通圖方面:其主要研究成果如下:(1)在論文的第一部分(第二章),我們研究了3連通圖的可去邊在生成樹(shù)上的分布。G是3-連通圖,e是G中的一條邊。若G-e是3連通圖的一個(gè)剖分,則稱(chēng)e是3連通圖

4、的可去邊。否則,e是G中不可去邊。我們?cè)谇叭搜芯康幕A(chǔ)上,對(duì)3連通圖的可去邊作了進(jìn)一步的研究,得到了以下結(jié)論:(1)3連通3正則圖的生成樹(shù)上至少有兩條可去邊;(2)設(shè)G是最小度至少為4的3連通圖,則任一生成樹(shù)上至少有兩條可去邊。(3)設(shè)G是圍長(zhǎng)至少為4的3連通圖,則任一生成樹(shù)上至少有兩條可去邊。 (2)在論文的第二部分(第三章--第六章),我們主要對(duì)4連通圖中的可去邊作了一些研究。4連通圖G中的可去邊定義如下:(1)從G中去掉邊

5、e得圖G-e.(2)如果e的某個(gè)端點(diǎn)在G-e中度數(shù)為3,則去掉此端點(diǎn),再兩兩聯(lián)結(jié)此端點(diǎn)在G-e中的3個(gè)鄰點(diǎn).(3)如果通過(guò)運(yùn)算(2)后有多重邊出現(xiàn),則用單邊代替它們,使此圖成為簡(jiǎn)單圖.最后得到的圖記為GΘe.如果G()e仍舊為4連通圖,則稱(chēng)e為G的可去邊;否則稱(chēng)為G的不可去邊.在第三章中對(duì)4連通圖的可去邊的性質(zhì)作了研究,我們記G的所有不可去邊記為EN(G),G的所有可去邊記為ER(G),得到了以下結(jié)果:(1).G為4連通圖,且|G|≥7

6、,(xy,S;A,B)是G的分離組,其中x∈A,y∈B.若A是G的邊-點(diǎn)割原子,|A|≥3,且a∈S,z∈A,za∈E(G),則za∈ER(G)。(2).設(shè)G是4連通圖,且|G|≥7,xy∈EN(G),(xy,S;A,B)是G的分離組,其中x∈A,y∈B,若A是一邊-點(diǎn)割原子,且E(A)∩EN(G)≠φ,則|A|=2.(3).設(shè)G是階數(shù)至少為8且最小度至少為5的4連通圖,則對(duì)于G中任意邊e,則有e是可去邊或e是可收縮邊。(4).G是4連

7、通圖,設(shè)C是G中的5-圈,若G不同構(gòu)于階數(shù)為10的環(huán)帶或階數(shù)為7的雙輪(具體定義見(jiàn)正文),則C上至少有兩條可去邊。在第四章,我們得到了以下結(jié)果:對(duì)于每一個(gè)階數(shù)大于或等于6的4連通圖(階數(shù)為6的2循環(huán)圖除外),至少有[(4|G|+16)/7]條可去邊,并且刻劃了達(dá)到這一下界的圖的結(jié)構(gòu)特征。在論文的第五章和第六章,我們對(duì)4連通圖中某些子圖的可去邊的分布進(jìn)行了研究,得到了如下結(jié)果:(1).G是圍長(zhǎng)至少是4的4連通圖,則G中的最長(zhǎng)圈上至少有兩條

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論