2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  靜力彈塑性分析法在側(cè)向荷載分布方式評估研究</p><p>  Armagan KORKMAZ1, Ali SARI2</p><p>  1訪問學(xué)者,土木工程學(xué)院, 得克薩斯大學(xué), 奧斯汀, TX 78712, PH: 512-232-9216; </p><p>  2博士, 土木工程學(xué)院, 得克薩斯大學(xué), 奧斯汀, TX 78712, P

2、H: 512-232-9216; </p><p><b>  摘要:</b></p><p>  這項研究的目的是通過彈塑性分析法和非線性時程分析法來評估框架結(jié)構(gòu)的性能或多種荷載形式及自然周期的多樣性。彈塑性分析法的荷載分布狀態(tài)有三角形、IBC(k=2),和矩形。在這個研究中四種典型的鋼筋混凝土框架結(jié)構(gòu)被采用,它們分別有四種不同的自然周期。非線性時程分析法是計算地震

3、的最好方法,但美國的FEMA-273容量震譜法和ATC-40位移系數(shù)法推薦使用靜力彈塑性分析法。這篇論文將比較分別利用靜力彈塑性分析法與非線性時程分析法分析所得到的結(jié)果。為了評估彈塑性分析法在三種不同荷載形式和四種自然周期下的結(jié)果,非線性時程分析法也被執(zhí)行來對照。在不同地震下分布在全球的50個站點紀錄了地面運動情況被用來做分析,通過比較靜力彈塑性分析法和非線性時程分析法的結(jié)果來選擇這種典型框架結(jié)構(gòu)在特殊自然周期下最佳的荷載分布方式。&l

4、t;/p><p>  關(guān)鍵詞:靜力彈塑性分析、非線性時程分析、荷載形式、抗彎矩框架</p><p><b>  前言</b></p><p>  一般的抗震設(shè)計中僅僅只有安全和碰撞是在地震設(shè)計規(guī)范中明確要求避免的,抗震設(shè)計一般基于結(jié)構(gòu)在地震中的性能表現(xiàn)。這樣在低的地震水平下就要求考慮結(jié)構(gòu)的非彈性行為。FEMA-273和ATC-40采用靜力彈塑性分析

5、法而不是非線性時程分析,因為前者在抗震計算中能得到更精確度結(jié)果。在抗震計算的目的是:(a)、在經(jīng)常發(fā)生的小震情況下避免非結(jié)構(gòu)破壞;(b)、在偶爾發(fā)生的中震情況下避免結(jié)構(gòu)破壞和最小限度的非結(jié)構(gòu)破壞;(c)、在罕遇大震下不倒塌或產(chǎn)生嚴重破壞。結(jié)構(gòu)設(shè)計要明確的在這三種情況下進行。</p><p>  這項研究的目的是通過彈塑性分析法和非線性時程分析法來評估框架結(jié)構(gòu)的性能或多種荷載形式及自然周期的多樣性。3、5、8和15

6、層的四種框架結(jié)構(gòu)被用來分析,分析中荷載分布狀態(tài)選擇三角形IBC(k=1),IBC(k=2)和矩形。其中k是與結(jié)構(gòu)周期相關(guān)的系數(shù),用來定義荷載豎向因素。這四種結(jié)構(gòu)用非線性程序DRAIN-2D (Prakash, V., Powell, G., Campbell, S., 1993)來分析,并把其結(jié)果與記錄的相應(yīng)數(shù)據(jù)比較。靜力彈塑性分析法和非線性時程分析法都被執(zhí)行,這兩種非線性分析方法的聯(lián)系將被研究。</p><p>

7、;  在各種不同的地震運動下建筑物的性能將被檢查,最后比較靜力彈塑性分析法和非線性時程分析法的結(jié)果來選擇這種典型框架結(jié)構(gòu)在特殊自然周期下最佳的荷載分布方式。</p><p><b>  1 地表運動數(shù)據(jù)</b></p><p>  在這個研究中,50個不同的數(shù)據(jù)被用于非線性時程分析法中,在表1中給出。所有數(shù)據(jù)來自四個A、B、C、D四個等級不同地點,它們的橫波速度分別是

8、> 750 m/s, 360m/s至750 m/s, 180 m/s至360 m/s, ? 180 m/s。這些數(shù)據(jù)選至發(fā)生在世界不同地方的毀滅性地震,其中地震的名稱、數(shù)據(jù)源、記錄名稱、加速度峰值、有效期及過期類型都在表1中給出。</p><p>  地表加速度峰值大約在0.046g至0.395g,其中g(shù)為重力加速度。所有地表運動數(shù)據(jù)取至距離地面最大為20km的近地范圍內(nèi)。</p><p

9、><b>  2 框架結(jié)構(gòu)的描述</b></p><p>  有著典型截面和鋼筋的3、5、8和15層的鋼筋混凝土框架結(jié)構(gòu)見圖1,這些鋼筋混凝土結(jié)構(gòu)是按Turkish 規(guī)范設(shè)計??紤]結(jié)構(gòu)所處環(huán)境為土質(zhì)類型Z1、地震1區(qū),設(shè)計為等級為1級,其中恒載、活載以及地震荷載在設(shè)計中已經(jīng)被考慮。</p><p>  所有這些鋼筋混凝土框架結(jié)構(gòu)都有3跨,長8m,層高3m。柱子假

10、定與地基固結(jié),鋼筋的屈服強度為22 kN/cm2 ,混凝土的抗壓強度為1.6kN/cm2.</p><p>  3層框架結(jié)構(gòu)的第一周期經(jīng)計算為0.54 s ,結(jié)構(gòu)中所有的框架梁截面為矩形,寬25 cm、高25cm,框架柱截面尺寸為30cmx30cm。5層框架結(jié)構(gòu)的第一周期經(jīng)計算為0.72 s ,框架梁截面為矩形,寬25 cm、高50cm,框架柱截面尺寸前三層為40cmx40cm,后兩層為30cmx30cm。8層和

11、15層的框架結(jié)構(gòu)的周期分別為0.90 s和1.20s ,兩者的框架梁截面為矩形,寬25 cm、高55cm。8層結(jié)構(gòu)框架柱截面尺寸前五層為50cmx50cm,后三層為40cmx40cm,而15層結(jié)構(gòu)框架柱截面尺寸前八層為80cmx80cm,后七層為60cmx60cm。</p><p>  3 框架結(jié)構(gòu)的靜力彈塑性分析法</p><p>  對于低等級的性能,為了估計其需求,就需要考慮結(jié)構(gòu)的非

12、彈性行為。靜力彈塑性分析法可以用來識別地震的危險,并選擇性能等級以此來設(shè)計性能目標。在靜力彈塑性分析法中,以側(cè)向荷載近似代表由層間產(chǎn)生的相關(guān)慣性力并使結(jié)構(gòu)在這個側(cè)向荷載作用下產(chǎn)生的位移大于地震設(shè)計中預(yù)期的位移(Li, Y.R., 1996)。這種分析方法提供了剪力與位移的置換關(guān)系并指出非彈性的界限和結(jié)構(gòu)側(cè)面負荷能力,而曲線斜率方面的改變表明了各有限元的屈服強度。靜力彈塑性分析法的主要目的是決定結(jié)構(gòu)的荷載數(shù)量和變形能力。這些信息都能夠用

13、于評價結(jié)構(gòu)的整體性。</p><p>  在詳細設(shè)計了鋼筋混凝土框架結(jié)構(gòu)后,就用靜力彈塑性分析法評估結(jié)構(gòu)的地震反應(yīng),為此電腦程序Drain 2D會被用到。有以下三種簡化荷載形式:三角形IBC(k=1),IBC(k=2)和矩形,其中k是與結(jié)構(gòu)周期相關(guān)的系數(shù),用來定義荷載豎向因素。它們也會用于3、5、8和15層的鋼筋混凝土框架結(jié)構(gòu)的靜力彈塑性分析。</p><p>  荷載標準的確定時基于設(shè)計

14、參數(shù)中的慣性力的分布。簡化的荷載布置方式如均布分布、三角形分布、IBC分布是最常見的荷載參數(shù)。</p><p><b>  地震力的豎向分布:</b></p><p><b>  (1)</b></p><p><b> ?。?)</b></p><p><b>  

15、式中:</b></p><p>  Cvx為豎向分布參數(shù)</p><p>  V為總側(cè)向力設(shè)計值,或結(jié)構(gòu)底部剪力</p><p>  wi和wx為部分結(jié)構(gòu)自重</p><p>  hi和hx為結(jié)構(gòu)高度(至基地算起)</p><p>  k為與結(jié)構(gòu)周期相關(guān)的參數(shù)</p><p>  除

16、這些側(cè)向荷載外,結(jié)構(gòu)還承受恒載和活載。P-△作用在靜力彈塑性分析中同樣被考慮。側(cè)向荷載一直會增加,直到3、5和8層的框架結(jié)構(gòu)樓頂位移達到50cm?,15層的框架結(jié)構(gòu)樓頂位移達到100 cm?。梁柱單元用于結(jié)構(gòu)分析,假定梁在水平方向是剛性的,考慮非彈性影響單元是鉸接的,而應(yīng)變強化被忽略。雙線性彎矩—轉(zhuǎn)角關(guān)系假定用于所用梁柱單元,由ACI 318-89建議的軸壓荷載—彎矩關(guān)系、P—M、交互關(guān)系被用于柱單元屈服表面。薄弱破碎區(qū)段的慣性矩Icr

17、 ,在分析的時候用于所有的梁柱。Icr取總慣性矩Ig的一半。</p><p>  由靜力彈塑性分析法所得的結(jié)果見圖2-5。每個框架結(jié)構(gòu)的彈塑性曲線都分均布荷載、三角形荷載以及IBC荷載三種荷載方式給出,顯示了剪重比與之相對應(yīng)的層間位移?;准袅由地面以上所有荷載相加得到,結(jié)構(gòu)重力W所有樓層重量之和。除此之外,這些曲線還表示結(jié)構(gòu)抗側(cè)力的損失情況和柱位移下的剪切破壞。曲線中曲率的變化表明了不同結(jié)構(gòu)單元屈服情況,首先

18、是梁屈服,接著是柱屈服和各單元的剪切破壞。隨著結(jié)構(gòu)自重的增加,頂層位移增大,出現(xiàn)首次屈服和剪切破壞(見圖2-5)。在相應(yīng)的結(jié)構(gòu)位移(水平位移)下,矩形荷載分布比其它荷載分布形式相比會造成更高的剪重比。 </p><p>  4 框架結(jié)構(gòu)的非線性時程分析</p><p>  前面對框架結(jié)構(gòu)進行了靜力彈塑性分析,下面用非線性時程分析法對其進行分析。這些框架結(jié)構(gòu)都承受恒載和活載,同靜力彈塑性分析

19、法一樣,P-△作用在非線性時程分析中也被考慮。在非線性時程分析中Drain 2D程序被利用,有限元程序也被用來模擬結(jié)構(gòu)。在靜力彈塑性分析中所描述的模型同樣用于非線性時程分析法中,且假定質(zhì)量集中在節(jié)點處。</p><p>  結(jié)構(gòu)承受的??種地震情況都是在以下地震中被記錄的,這些地震是美國南加州Anza地震、美國加州Parkfield地震、美國西部Morgan Hill地震、土耳其Kocaeli地震、日本Coyot

20、a Lake地震、美國N. Palm Springs地震、美國加州Northridge地震、美國加州Santa Barbara地震、美國Imperial Valley地震、美國加州Cape Mendocino地震、日本神戶Kobe地震、美國Central California地震、美國加州Lytle Creek地震、美國南加州Whittier Narrows 地震、美國Hollister Westmoreland地震、美國Livermo

21、r地震、美國加州Cape Mendocino地震。這些數(shù)據(jù)取自A、B、C、D四類地區(qū),來用于非線性時程分析。</p><p>  被選中的地震有著不同的頻率和地表加速度峰值,數(shù)據(jù)來自近地范圍因而可以用來評估結(jié)構(gòu)的反應(yīng)并與靜力彈塑性分析法所得到的結(jié)果比較。3、5、8和15層框架結(jié)構(gòu)的非線性時程分析的結(jié)果見圖-6。由此可以比較兩種分析方法在不同周期、不同荷載情況,即矩形、三角形和IBC(k=2)下四種框架結(jié)構(gòu)的結(jié)果。

22、</p><p><b>  結(jié)論</b></p><p>  在詳細設(shè)計了鋼筋混凝土框架結(jié)構(gòu)后,靜力彈塑性分析法和非線性時程分析法被執(zhí)行來評價在不同荷載情況下的地震反應(yīng)。靜力彈塑性分析法假定抗震所設(shè)的目標位移量與實際地震下的最大位移大致一樣。</p><p>  從圖-2至圖-5可以看出,對于高層的框架結(jié)構(gòu)位移增大,出現(xiàn)首次屈服和剪切破壞。在

23、相應(yīng)的結(jié)構(gòu)位移(水平位移)下,矩形荷載分布比其它荷載分布形式相比會造成更高的剪重比。 </p><p>  如圖-6所示,在所選的地表運動數(shù)據(jù)下,非線性時程分析法在三角形荷載、矩形荷載和IBC(k=2)荷載情況的結(jié)果相互比較知:靜力彈塑性曲線在高層框架結(jié)構(gòu)(8和15層框架結(jié)構(gòu))下與非線性時程分析得出的結(jié)構(gòu)不是很相符。靜力彈塑性分析法在矩形分布下所得的抗震要求要比其它荷載方式如三角形荷載、IBC(k=2)荷載形式下

24、更合理。</p><p><b>  參考文獻</b></p><p>  [1] ATC-40 (1996), “Seismic evaluation and Retrofit of Concrete Buildings”, Vol.1, Applied Technology Council, Redwood City, CA.</p><p&

25、gt;  [2] FEMA-273 (1997),“NEHRP Guidelines for the Seismic Rehabilitation of Buildings, federal Emergency Management Agency”, Washington D.C.</p><p>  [3] IBC (2000) “International Building Code”.</p>

26、;<p>  [4] Prakash, V., Powell,G., Campbell, S. (1993), DRAIN 2D User Guide V 1.10, University of California at Berkeley, CA.</p><p>  [5] Li, Y.R. (1996), “Non-Linear Time History And Pushover Ana

27、lyses for Seismic Design and Evaluation” PhD Thesis, University of Texas, Austin, TX.</p><p>  [6] Vision 2000 Committee (1995).Structural Engineering Association of California, CA.</p><p>  EV

28、ALUATION OF LATERAL LOAD PATTERN</p><p>  IN PUSHOVER ANALYSIS</p><p>  Armagan KORKMAZ1, Ali SARI2</p><p>  1Visitor Researcher, Department of Civil Engineering, University of Texa

29、s at Austin, Austin,TX78712, PH: 512-232-9216; </p><p>  2Ph. D. Student, Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712, PH: 512-232-9216;</p><p><b>  `&

30、lt;/b></p><p>  The objective of this study is to evaluate the performance of the frame structures or various load patterns and variety of natural periods by performing pushover and nonlinear dynamic time

31、 history analyses. The load distributions for pushover analyses are chosen as triangular, IBC (k=2) and rectangular. Four different framed structures are used, which are typical reinforced concrete (R\C) frame systems an

32、d have four different natural periods. Even though the nonlinear dynamic time history analys</p><p>  Keywords: Pushover analysis, nonlinear time history, load patterns, moment-resisting frame</p><

33、;p>  INTRODUCTION</p><p>  Only the life safety and collapse prevention in general earthquake resistant design phenomena are explicitly prevented in seismic design codes. The design is generally based on

34、evaluating the seismic performance of structures. It is required to consider inelastic behavior while evaluating the seismic demands at low performance levels. FEMA-273 and ATC-40 use pushover analysis as nonlinear stati

35、c analysis but nonlinear time history analysis has more accurate results on computing seismic demands (</p><p>  The objective of this study is to evaluate the performance of the frame structures for various

36、 load patterns and variety of natural periods by performing pushover and nonlinear dynamic time history analyses. 3, 5, 8 and 15 story R\C frame structures are used in the analyses and the load distributions for pushover

37、 analyses are chosen as triangular (IBC, k=1), IBC (k=2) and rectangular, where k is the an exponent related to the structure period to define vertical distribution factor (IBC, 2000).</p><p>  The perform

38、ance of the buildings subjected to various representative earthquake ground motions is examined. Finally, pushover and nonlinear time history analyses results are compared to choose the best load distribution (pattern) f

39、or specific natural period for these types of reinforced concrete frame structures.</p><p>  GROUND MOTION DATA</p><p>  For this study, it is considered as 50 different data used in the nonline

40、ar dynamic time history analyses, given in the Table 1. All the data are from different site classes as A, B, C and D. The shear velocities for the site classes A, B, C and D are Vs > 750 m/s, 360m/s to 750 m/s, 180 m

41、/s to 360 m/s, and 180 m/s, respectively. The ground motion data are chosen from different destructive earthquakes around the world earthquake name, date of earthquake, data source, record name, peak ground a</p>

42、<p>  The peak ground accelerations are in the range 0.046 to 0.395g, where g is acceleration due to gravity. All ground motion data are recorded in near-field region as in maximum 20 km distance.</p><p

43、>  DESCRIPTION OF THE FRAME STRUCTURES</p><p>  3, 5, 8 and 15-story R\C frame structures with typical cross-sections and steel reinforcements are shown in Figure 1. The reinforced concrete frame structur

44、es have been designed according to the rules of the Turkish Code. The structures have been considered as an important class 1 with subsoil type of Z1 and in seismic region 1. The dead, live and seismic loads have been t

45、aken account during design.</p><p>  All reinforced concrete frame structures consist three-bay frame, spaced at 800 cm. The story height is 300 cm. The columns are assumed as fixed on the ground. Yield stre

46、ngth of the steel reinforcements is 22 kN/cm2 and compressive strength of concrete is 1.6kN/cm2.</p><p>  The first natural period of the 3-story frame structure is computed 0.54 s. The cross-section of all

47、 beams in this frame is rectangular-shapes with 25cm width and 50cm height. The cross-section of all columns is 30cmx30cm. The first natural period of 5-story frame structure is 0.72 s and the cross-section of beams is 2

48、5cm width and 50cm height similar to 3-story frame. Cross-section of columns at the first three stories is 40cmx40cm and at the last two stories, it is 30cmx30cm. The eight-story </p><p>  NONLINEAR STATIC P

49、USHOVER ANALYSIS OF FRAME STRUCTURES</p><p>  For low performance levels, to estimate the demands, it is required to consider inelastic behavior of the structure. Pushover analysis is used to identify the se

50、ismic hazards, selection of the performance levels and design performance objectives. In Pushover analysis, applying lateral loads in patterns that represent approximately the relative inertial forces generated at each f

51、loor level and pushing the structure under lateral loads to displacements that are larger than the maximum displacement</p><p>  After designing and detailing the reinforced concrete frame structures, a nonl

52、inear pushover analysis is carried out for evaluating the structural seismic response. For this purpose the computer program Drain 2D has been used. Three simplified loading patterns; triangular, (IBC, k=1), (IBC, k=2) a

53、nd rectangular, where k is an exponent related to the structure period to define vertical distribution factor, are used in the nonlinear static pushover analysis of 3, 5, 8 and 15-story R\C frame struct</p><p&

54、gt;  Load criteria are based on the distribution of inertial forces of design parameters. The simplified loading patterns as uniform distribution, triangular distribution and IBC distribution, these loading patterns are

55、the most common loading parameters.</p><p>  Vertical Distribution of Seismic Forces:</p><p><b> ?。?)</b></p><p><b>  (2)</b></p><p><b>  

56、where:</b></p><p>  Cvx= Vertical distribution factor</p><p>  V = Total design lateral force or shear at the base of structure</p><p>  wi and wx = The portion of the total

57、gravity load of the structure</p><p>  hi and hx = The height from the base</p><p>  k = An exponent related to the structure period</p><p>  In addition these lateral loadings, fra

58、mes are subjected live loads and dead weights. P-△ effects have been taken into the account during the pushover analyses. The lateral force is increased for 3, 5 and 8-story frames until the roof displacement reached 50

59、cm and 100cm for15-story frame. Beam and column elements are used to analyze the frames. The beams are assumed to be rigid in the horizontal plane. Inelastic effects are assigned to plastic hinges at member ends. Strain-

60、hardening is neglecte</p><p>  The results of the pushover analyses are presented in Figures 2 to 5. The pushover curves are shown for three distributions, and for each frame structures. The curves represen

61、t base shear-weight ratio versus story level displacements for uniform, triangular and IBC load distribution. Shear V was calculated by summing all applied lateral loads above the ground level, and the weight of the buil

62、ding W is the summation of the weights of all floors. Beside these, these curves represent the lost of l</p><p>  NONLINEAR DYNAMIC TIME HISTORY ANALYSIS OF FRAME STRUCTURES</p><p>  After perfo

63、rming pushover analyses, nonlinear dynamic time history analyses have been employed to the four different story frame structures. These frames are subjected live and dead weights. Also P- △ effects are under consideratio

64、n as in pushover analysis. For time history analysis P-? effects have been taken into the account. Finite element procedure is employed for the modeling of the structures during the nonlinear dynamic time history analyse

65、s. Drain 2D has been used for nonlinear time hist</p><p>  The frames are subjected to 50 earthquake ground motions, which are recorded during Anza (Horse Cany), Parkfield, Morgan Hill, Kocaeli, Coyota Lake,

66、 N. Palm Springs, Northridge, Santa Barbara, Imperial Valley, Cape Mendocino, Kobe, Central California, Lytle Creek, Whittier Narrows, Hollister Westmoreland, Landers, Livermor and Cape Mendocino earthquakes, for the non

67、linear dynamic time history analyses. These data are from different site classes as A, B, C and D.</p><p>  The selected earthquake ground motions have different frequency contents and peak ground accelerati

68、ons.The ground motion data are chosen from near-field region to evaluate the response of the frame structures in this region and comparison of them with pushover analyses results. The results of nonlinear time history a

69、nalysis for 3, 5, 8 and15-story frame structures are presented in Figure 6. Pushover and nonlinear time history analyses results are compared to for specific natural period for fou</p><p>  CONCLUSIONS</

70、p><p>  After designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis and nonlinear dynamic time history analysis are carried out for evaluating the structural seismic re

71、sponse for the acceptance of load distribution for inelastic behavior. It is assumed for pushover analysis that seismic demands at the target displacement are approximately maximum seismic demands during the earthquake.&

72、lt;/p><p>  According to Figures 2, 3, 4 and 5, for higher story frame structures, first yielding and shear failure of the columns is experienced at the larger story displacements and rectangular distribution

73、always give the higher base shear-weight ratio comparing to other load distributions for the corresponding story displacement.</p><p>  As it is presented in Figure 6, nonlinear static pushover analyses for

74、 IBC (k=2), rectangular, and triangular load distribution and nonlinear time history analyses results for the chosen ground motion data (all of them are near-field data) are compared. Pushover curves do not match with no

75、nlinear dynamic time history analysis results especially for higher story reinforced pushover analyses results for rectangular load distribution estimate maximum seismic demands during the given earthquakes mo</p>

76、<p>  REFERENCES</p><p>  [1] ATC-40 (1996), “Seismic evaluation and Retrofit of Concrete Buildings”, Vol.1, Applied Technology Council, Redwood City, CA.</p><p>  [2] FEMA-273 (1997),“

77、NEHRP Guidelines for the Seismic Rehabilitation of Buildings, federal Emergency Management Agency”, Washington D.C.</p><p>  [3] IBC (2000) “International Building Code”.</p><p>  [4] Prakash,

78、 V., Powell,G., Campbell, S. (1993), DRAIN 2D User Guide V 1.10, University of California at Berkeley, CA.</p><p>  [5] Li, Y.R. (1996), “Non-Linear Time History And Pushover Analyses for Seismic Design an

79、d Evaluation” PhD Thesis, University of Texas, Austin, TX.</p><p>  [6] Vision 2000 Committee (1995).Structural Engineering Association of California, CA.</p><p>  結(jié)構(gòu)工程學(xué)和其設(shè)計原則和方法</p><

80、;p>  1 結(jié)構(gòu)工程學(xué)和其設(shè)計過程</p><p>  一般來說,結(jié)構(gòu)工程學(xué)覆蓋規(guī)劃,設(shè)計和全部結(jié)構(gòu)的建設(shè)。對于鋼結(jié)構(gòu),包括構(gòu)架,電鍍的結(jié)構(gòu),外殼和受拉結(jié)構(gòu)構(gòu)成的自立、承重的形式在內(nèi)。特別是,結(jié)構(gòu)設(shè)計的目的為滿足所需的用途而作出的安全、經(jīng)濟的結(jié)構(gòu)設(shè)計和制圖。設(shè)計過程的步驟能象下面這樣列出:</p><p> ?。╝)初步的設(shè)計和規(guī)劃。這包括選用最經(jīng)濟的結(jié)構(gòu)形式和材料。初步的設(shè)計經(jīng)

81、常為了能作比較而被認為有必要。</p><p> ?。╞)對一個給定類型和布置的建筑物進行詳細的設(shè)計。這包括:</p><p> ?。á瘢┙ㄖ锲浞治龊驮O(shè)計的可行性;</p><p><b> ?。á颍┖奢d的估計;</b></p><p> ?。á螅┓治龈鞣N可變荷載并進行荷載的組合,確定最不利的設(shè)計荷載;</p&g

82、t;<p>  (Ⅳ)基礎(chǔ),結(jié)構(gòu)的框架,構(gòu)件和連接設(shè)計;</p><p>  (Ⅴ)最終的布置和詳圖的準備工作。</p><p>  然后準備的材料表,大量的清單和說明也許能結(jié)束概算和投標書的編制。結(jié)構(gòu)設(shè)計人員使用他有關(guān)結(jié)構(gòu)力學(xué)和設(shè)計的知識,材料,巖土工程學(xué) ,和實際規(guī)范,并且結(jié)合他的實際經(jīng)驗而作出令人滿意的設(shè)計。他從專家處聽取勸告,運用設(shè)計援助,手冊和計算機幫助他下決定并進

83、行復(fù)雜的分析。</p><p>  2 結(jié)構(gòu)工程師的性質(zhì)和角色</p><p>  從上面的所述可推斷出工程師的工作實際上是機械的。在建筑物建造過程中,對于下列人就某些場合認為他的位置是起作用的:</p><p>  (a) 就必要的事請教建筑師的委托人;</p><p>  (b) 計劃和控制整個項目的建筑師聘請顧問;</p>

84、;<p>  (c) 顧問進行設(shè)計,準備圖畫和投標書,并進行建筑物的建設(shè)監(jiān)督;</p><p>  (d) 承包方進行建筑物的建造、裝配和設(shè)備的安裝。</p><p>  另外, 設(shè)計員是具有專業(yè)設(shè)計水平隊伍的成員之一:總工程師,項目工程師,設(shè)計工程師,計算機職員,技術(shù)工程師,以及專家。他必須在隊伍里關(guān)系很好。</p><p>  一些質(zhì)量和特性的問題

85、需要結(jié)構(gòu)工程師成功操作的有:對光學(xué),聲學(xué)的了解和判斷,對大的管理的經(jīng)驗和鍛煉。他的任務(wù)也許可以概括為規(guī)劃,設(shè)計,圖畫和投標書的準備和建造監(jiān)督。他決定材料,結(jié)構(gòu)形式和所使用的設(shè)計方法。他考慮投標書的可行性,檢查、監(jiān)督、批準建筑物的裝配和建造過程。他要對安全負全部責(zé)任,必須保證由偶然的原因造成的失敗結(jié)果在容許范圍內(nèi)。</p><p>  這本書中論述的設(shè)計知識結(jié)構(gòu)上工程師工作的一部分。</p><

86、p><b>  3 建筑物的分類</b></p><p>  建筑物主要用于以下目的::</p><p>  (a)圍住空地以便控制環(huán)境;</p><p>  (b)供應(yīng)人、機器及材料等有安置的場所;</p><p>  (c)安放和保存材料;</p><p> ?。╠)為人、機器及材料的

87、運輸跨越間隔。</p><p>  框架建筑物可以根據(jù)使用分類為:</p><p>  家庭用途——住宅和別墅;</p><p>  商貿(mào)用途——辦事處,銀行,貯藏及購物中心等;</p><p>  公共設(shè)施——學(xué)校,醫(yī)院,體育設(shè)施等等;</p><p>  展覽性質(zhì)——教堂,劇場,博物館,休閑中心,體育建筑等;<

88、;/p><p>  工業(yè)用途——工廠,倉庫,電廠,鋼鐵廠,制造廠,小型機庫等。</p><p>  其他重要的工程學(xué)結(jié)構(gòu)有:</p><p>  橋——桁架,撐桿,拱以及懸索;</p><p>  塔——水塔,塔式建筑物,燈塔等;</p><p>  海上結(jié)構(gòu)——石油平臺;</p><p>  特殊

89、結(jié)構(gòu)——水泥碾磨設(shè)施,多層的汽車停車場,無線電望遠鏡平臺,礦山頂部結(jié)構(gòu)等。</p><p>  上述列表中每個種類的結(jié)構(gòu)都能使用各種材料,結(jié)構(gòu)形式或系統(tǒng)建造。工程師常根據(jù)從使用的形式或系統(tǒng)分類的鋼結(jié)構(gòu)進行使用。這些包括:</p><p> ?。╝ )單層單跨或多跨結(jié)構(gòu)可能采用桁架,支撐框架或剛性框架;</p><p>  (b )多層單跨或多跨也許是支撐或剛性框架結(jié)

90、構(gòu);</p><p> ?。╟ )空間分隔結(jié)構(gòu)——空間甲板,圓屋頂,塔,以及其他等等。空間甲板和現(xiàn)代的圓屋頂是超靜定結(jié)構(gòu)。塔也許是靜定的空間結(jié)構(gòu);</p><p> ?。╠ )受拉結(jié)構(gòu),懸索結(jié)構(gòu);</p><p> ?。╡ )張力蒙皮結(jié)構(gòu)。</p><p>  板和殼型結(jié)構(gòu),例如鋼容器,在這里不被考慮。書中只涉及所挑選的結(jié)構(gòu)的詳細設(shè)計和設(shè)計研

91、究。</p><p>  4 概念設(shè)計,革新和計劃設(shè)計</p><p>  概念設(shè)計是進行選擇適當?shù)男问交蛳到y(tǒng),并在給定的建筑位置作適當?shù)牟贾?。這經(jīng)常是建筑師獨有的特權(quán)。最終產(chǎn)生的理想的概念設(shè)計應(yīng)該產(chǎn)生于建筑師,結(jié)構(gòu)及技術(shù)工程師等人的共同努力。不過,最偉大的成就往往是有才華的個人做的。例如,下面兩個人:</p><p>  Fazlur Khan——高層筒式結(jié)構(gòu);

92、</p><p>  Buckminster Fuller-幾何圓屋頂。</p><p>  在英國常常是建筑師制出給定建筑物的形式和布置,對于他來說認為是最好的。他的決定基于功能,美學(xué),環(huán)境,以及經(jīng)濟上的考慮。然后結(jié)構(gòu)工程師從建筑師處獲得信息,進行選擇和設(shè)計結(jié)構(gòu)形式,但他可能沒有在建筑師的最初設(shè)計中插手。而往往有一個因素是最主要,并起決定作用的因素,例如,在工業(yè)廠房中考慮設(shè)備功能的操縱控

93、制需求,但是,在展覽建筑中審美是主要的考慮。</p><p>  新穎和創(chuàng)新的建筑總是另人滿意的,而我們就是為了這種目的努力。但人開發(fā)的建筑形式總是受所使用的材料的可用性和他當時的知識所限制。過去同現(xiàn)在一樣,當超出限制時結(jié)構(gòu)一般都失敗。經(jīng)常建筑形式不是新的解決辦法,但是是證明好的現(xiàn)有形式并進行正確的選擇。以下是最近的結(jié)構(gòu)工程學(xué)革新的例子:</p><p> ?。╝ )分析方法——矩陣和有限

94、元法;</p><p> ?。╞ )設(shè)計方法——塑性設(shè)計,極限狀態(tài)理論和優(yōu)化設(shè)計;</p><p>  (c )建筑物形式——空間甲板,幾何圓屋頂,現(xiàn)代受拉結(jié)構(gòu),箱式桁架橋,多層懸索結(jié)構(gòu)等。</p><p>  規(guī)劃也許是概念設(shè)計的實際的表達。各種不同的提議被反映在圖紙上,比如總體布置,平面圖及立面圖來滿足各種需求,還有透視圖來給最終的設(shè)計有一個直觀的印象。其周圍的

95、建筑模型和比例也可能影響設(shè)計的最后決定。計劃設(shè)計的準備和介紹對最后的通過很重要,因為通過往往取決于那些非技術(shù)性的人們。</p><p>  另外, 工程師必須考慮結(jié)構(gòu)所用的材料,如鋼鐵、混凝土、磚石或木材,并做出最適當?shù)倪x擇。需要在概念、計劃設(shè)計階段考慮的因素有以下一些方面:</p><p> ?。╝ )建筑物的位置和其周圍環(huán)境;</p><p>  (b )場地及

96、基礎(chǔ)的條件;</p><p> ?。╟ )在建造過程中的天氣條件;</p><p>  (d )材料的有效性;</p><p> ?。╡ )材料和裝配構(gòu)件往工地的運輸;</p><p> ?。╢ )裝配和建造過程中,勞力作工的質(zhì)量是必需和有效的;</p><p> ?。╣ )在制作和建造中適當程度的監(jiān)督;</p&

97、gt;<p> ?。╤ )由疲勞和脆性破壞可能產(chǎn)生的;</p><p>  (i )測定需要了給針對腐蝕和火的保護措施;</p><p>  (j )偶然損害的可能性;</p><p> ?。╧ )完成后必要的維修;</p><p> ?。╨ )將來破壞的可能性。</p><p>  結(jié)構(gòu)和建造方法形式和

98、類型的最終決定依賴很多因素,往往考慮成本而將其它置之腦后。</p><p>  Structural engineering,design principles and methods</p><p>  1 Structural engineering and the design process</p><p>  In general , structura

99、l engineering covers planning , design and construction of all structures . For steelwork these include self-supporting and load-bearing forms consisting of frameworks , plated structures, shells and tension structures.

100、In particular the aim of structural design is to produce the design and drawings for a safe and economical structure that fulfills its required purpose. The steps in the design process can be set out as follows .</p&g

101、t;<p>  Conceptual design and planning . This involves selecting the most economical structural form and materials to be used . Preliminary designs are often necessary to enable comparisons to be made.</p>

102、<p>  Detail design for a given type and arrangement of structure. This includes:</p><p>  ( Ⅰ ) idealization of the structure for analysis and design;</p><p>  ( Ⅱ ) estimation of load

103、ing;</p><p>  ( Ⅲ ) analysis for the various load cases and combinations of loads and identification of the most severe design actions;</p><p>  ( Ⅳ ) design of the foundations , structural

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論