版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 理工學(xué)院</b></p><p> 畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p> 學(xué) 院: 河北科技大學(xué)理工學(xué)院 </p><p> 專 業(yè): 土木工程 <
2、/p><p> 姓 名: xxx </p><p> 學(xué) 號(hào): 08L1401329 </p><p> 外文出處: 2007年11月威力跨科學(xué)第二期 “高大的</p><p> 結(jié)構(gòu)
3、設(shè)計(jì)和特殊的建筑” </p><p> 附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p> 附件1:外文資料翻譯譯文</p><p> 迪拜塔:工程世界的最高建筑(部分)</p><p> 所有的超高層建筑,困難結(jié)構(gòu)工程問題需要處理和解決。本文就迪拜塔
4、的結(jié)構(gòu)體系大概地介紹了一下。</p><p><b> 1、結(jié)構(gòu)系統(tǒng)描述</b></p><p> 迪拜塔的目標(biāo)不簡(jiǎn)單的是世界的最高建筑,它是世界的最高愿望的體現(xiàn)。 上層建筑正在建造中,在2007年的夏天已經(jīng)達(dá)到了135層。這個(gè)建筑最后的高度是一個(gè)“非常嚴(yán)守的秘密”。這個(gè)多功能的摩天大樓將超過當(dāng)前509m(1671英尺)的臺(tái)北101大廈記錄保持者。這個(gè)28000㎡
5、(3000000英尺)的鋼筋混凝土多用塔將用于零售店、阿瑪尼酒店、住宅和辦公室。</p><p> 設(shè)計(jì)師故意塑造混凝土結(jié)構(gòu)的迪拜塔——以“Y”的形狀計(jì)劃——是為了減少塔的風(fēng)阻力和保持建筑的簡(jiǎn)單施工性。這個(gè)結(jié)構(gòu)系統(tǒng)可以描述為一個(gè)“支撐的核心”。每一個(gè)風(fēng)翼,都有它自己的高性能走廊和核心柱,其他的柱子取決于六邊的中心核或者六角形中心,結(jié)果是使塔在橫向的和變形的地方都非常的堅(jiān)硬。Owings & Merril
6、l(美國(guó)證券公司)應(yīng)用一個(gè)嚴(yán)謹(jǐn)?shù)膸缀螌W(xué)于塔樓的中心對(duì)齊、墻和圓柱基礎(chǔ)。</p><p> 這棟樓后面的每一層都有一個(gè)螺旋梯的建設(shè)。這個(gè)塔樓交錯(cuò)的網(wǎng)絡(luò)組織,例如建筑的踏步是由排成一行的柱子上的墻提供的負(fù)荷。這允許建筑的建設(shè)沒有與柱子移動(dòng)有關(guān)系這方面的困難。</p><p> 這樣交錯(cuò)的組織格局以致塔的每一個(gè)交錯(cuò)處的寬度改變。踏步和形狀的優(yōu)勢(shì)形成了“迷惑風(fēng)”,因?yàn)槊繉拥娘L(fēng)遇到不同的建筑形狀
7、,風(fēng)渦流就不能到達(dá)各組織。</p><p> 塔和矮墻結(jié)構(gòu)正在建造當(dāng)中,這個(gè)建筑計(jì)劃在2008年竣工。</p><p><b> 2、結(jié)構(gòu)分析和設(shè)計(jì)</b></p><p> 這個(gè)中心的六角鋼筋混凝土芯墻提供與封閉管和軸結(jié)構(gòu)類似的抗扭強(qiáng)度。這個(gè)中心六角墻靠風(fēng)墻和錘頭墻支撐,就像網(wǎng)絡(luò)和法蘭梁抵抗風(fēng)切變和端矩。在機(jī)械板上的支架允許圓柱承受建筑
8、的橫向荷載;因此,所有縱向的混凝土是用來支撐重力和側(cè)向荷載。墻的優(yōu)勢(shì)來自于C80到C60強(qiáng)度的混凝土和普通的水泥、粉煤灰的利用。當(dāng)?shù)毓橇媳挥糜诨炷僚浜媳仍O(shè)計(jì)。在90天的時(shí)間里,C80混凝土建造的結(jié)構(gòu)較低的部分指定的是新的為43800N/(6350ksi)的彈性模量。墻和柱子的尺寸優(yōu)化利用虛擬工作/拉格朗日乘數(shù)法,結(jié)果出來一個(gè)非常堅(jiān)固的結(jié)構(gòu)。鋼筋混凝土結(jié)構(gòu)是按照美國(guó)混凝土學(xué)會(huì)的318-02混凝土建筑規(guī)范要求設(shè)計(jì)的。</p>
9、<p> 墻厚和柱子的尺寸被精細(xì)的調(diào)節(jié)是為了減小組成建筑物的單個(gè)單元的漸變和收縮帶來的影響。為了減小微分柱縮短的影響,因?yàn)橹又荛L(zhǎng)和內(nèi)墻之間的徐變,柱子的尺寸控制滿足自重應(yīng)力的匹配列入內(nèi)部走廊墻壁。支腿的五種集合,分布于建筑內(nèi),將所有垂直承載元素集合起來,進(jìn)一步確保重力的統(tǒng)一,因此來減少微小的徐變。自混凝土在更薄的墻或柱上更快的收縮,周邊600mm厚的柱子與標(biāo)準(zhǔn)的走廊墻厚匹配(類似體積-到-表面比例)是為了確保柱和墻收縮與
10、混凝土收縮比例相同。</p><p> 塔樓最上面的部分由利用對(duì)角側(cè)向支撐體系的鋼架尖頂做成。鋼結(jié)構(gòu)的塔尖是專為重力、風(fēng)、地勢(shì)和軟化依照美國(guó)鋼結(jié)構(gòu)協(xié)會(huì)荷載要求和鋼結(jié)構(gòu)建筑設(shè)計(jì)規(guī)范的阻力系數(shù)(1999)設(shè)計(jì)的。外部暴露的鋼鐵用一種加混式貼合-實(shí)用鋁材保護(hù)完成。</p><p> 用8.4版的ETABS文件對(duì)結(jié)構(gòu)作重力(包括P-△分析),風(fēng)載,地震荷載分析。這個(gè)三維的有限元分析模型由鋼筋混
11、凝土墻、連梁、平板、筏板、樁和鋼筋尖頂系統(tǒng)組成(圖4)。完整的三維有限元分析模型由73500個(gè)殼體和75000個(gè)節(jié)點(diǎn)組成。在側(cè)向分荷載的作用下,結(jié)構(gòu)的變形量通常低于一般標(biāo)準(zhǔn)。動(dòng)態(tài)分析表明第一模式是周期為11.3s的側(cè)移。第二模式是周期為10.2s的垂直側(cè)移。扭轉(zhuǎn)是第五模式,周期為4.3s。</p><p> 這個(gè)鋼筋混凝結(jié)構(gòu)的設(shè)計(jì)師根據(jù)ACI318-02(美國(guó)混凝土協(xié)會(huì))的混凝土建筑規(guī)范要求。</p>
12、;<p> 迪拜市政局(DM)指定迪拜為一個(gè)UBC97加速度為2a的地震區(qū)(地震因數(shù)Z=0.15和土壤剖面)。地震分析包括一個(gè)特制的反應(yīng)譜分析。典型的地震荷載不是支配整個(gè)鋼筋混凝土塔架結(jié)構(gòu)的設(shè)計(jì)。地震荷載控制著鋼筋混凝土平臺(tái)建筑和鋼架塔的設(shè)計(jì)。</p><p> Max Irvine博士(結(jié)構(gòu)力學(xué)和動(dòng)力學(xué)咨詢工程師,位于澳大利亞的悉尼)發(fā)展了定位地震報(bào)道的項(xiàng)目,其中包括一個(gè)地震危險(xiǎn)性分析。潛在的
13、液化根據(jù)一些可接受的方法被研究;所以深層的塔基液化沒有被考慮。</p><p><b> 3、基礎(chǔ)和現(xiàn)場(chǎng)條件</b></p><p> 塔基是筏板基礎(chǔ)。這個(gè)堅(jiān)固的鋼筋混凝土筏板有3.7m厚,由C50(強(qiáng)度)加強(qiáng)混凝土灌注(SCC)。除了標(biāo)準(zhǔn)的立方體測(cè)試,筏板混凝土在布局前由流動(dòng)桌,實(shí)地測(cè)試。L-箱,V-箱和溫度。筏板分四塊區(qū)域進(jìn)行灌注(三翼和中心)。每塊筏板的灌注
14、周期是24H。筏板間距一般為300mm,這樣的安排以至于每個(gè)方向的10條間距是被忽略的,導(dǎo)致一系列的“灌注加強(qiáng)條”貫穿筏板,在開口大小為600mm×600mm的地方,每隔一段時(shí)間進(jìn)入完成混凝土澆注。</p><p> 塔的筏板基礎(chǔ)是3.7m(12英尺)厚,因此,除了耐久性,最高溫度限制也是非常重要的考慮因素。50Mpa的筏板混合物包含40%的粉煤灰和0.34的水灰比。筏板混凝土的巨大的安置測(cè)驗(yàn)的立方體
15、,3.7m的一邊被灌注來查證安置測(cè)試程序和監(jiān)控混凝土溫度上升。在立方體試塊測(cè)驗(yàn)中利用熱電偶,巖相分析后進(jìn)行檢查。</p><p> 塔的筏板由194根現(xiàn)場(chǎng)澆注的樁支撐。這些樁的直徑為1.5m,大約有43m長(zhǎng),每隔樁的承受能力為3000噸,塔樁荷載試驗(yàn)超過6000噸。C60混凝土的抗壓強(qiáng)度是利用聚合物漿通過用混凝土導(dǎo)管的方式來完成的。摩擦樁是石灰?guī)r自然地結(jié)合/保持石灰?guī)r的形態(tài),發(fā)展成最終的表面摩擦為250-350
16、Kpa(2.6-3.6噸/英尺)的樁。當(dāng)鋼筋籠放入樁內(nèi)時(shí),特別要注意的是確定鋼筋籠的方向以保證鋼筋末端能夠穿過許多的鋼筋籠樁而不被擋斷,這樣可以大大的簡(jiǎn)化筏板的建造。</p><p> 由于目前的情況極度地腐蝕地下水,擁有一個(gè)嚴(yán)謹(jǐn)?shù)姆栏胧﹣泶_?;A(chǔ)的耐久性是必須的。措施包括專業(yè)的防水系統(tǒng),提高混凝土保護(hù)層,在混凝土中加入防腐劑,嚴(yán)格控制裂紋的設(shè)計(jì)標(biāo)準(zhǔn),利用鈦網(wǎng)眼來外加電流陰極來保護(hù)系統(tǒng)。</p>
17、<p> 4、上層建筑混凝土技術(shù)</p><p> 混凝土垂直元素的設(shè)計(jì)師由在10小時(shí)允許建筑周期內(nèi)的一個(gè)10Mpa的抗壓壓強(qiáng)決定的。為了允許建筑周期和設(shè)計(jì)強(qiáng)度/80Mpa/44Gpa的模數(shù)和確保足夠的可泵性和可操作性。迪拜周圍情況的不同,一個(gè)寒冷的冬天到極度熱的偶爾最高溫度達(dá)到50℃的夏天,為了適應(yīng)不同強(qiáng)度發(fā)展和可操作性的損失,用量和延遲樓層建設(shè)時(shí)是為了適應(yīng)不同的季節(jié)。</p>&
18、lt;p> 確?;炷帘盟瓦_(dá)到世界紀(jì)錄的高度可能是最困難的設(shè)計(jì)問題,特別是考慮到夏季氣溫高。四種單獨(dú)的能夠幫助改善泵站為建設(shè)的壓力越來越高的情況的基本混合物已經(jīng)被開發(fā)出來。在2005年實(shí)施的橫向抽水試驗(yàn),相當(dāng)于泵送到600m(1970英尺)高度的壓力損失,是為了決定這些混合物的泵送和建立摩擦系數(shù)。目前混凝土配合比為13的粉煤灰和10%的最大骨料粒徑為20mm(3/4英寸)的硅灰。這樣的混合實(shí)施上靠下降大約600mm(24英寸)來
19、達(dá)到自身加固,直到泵送壓力超過大約200磅才被使用。</p><p> 據(jù)設(shè)想,將其轉(zhuǎn)變?yōu)榛旌习?4mm的最大骨料粒徑和20%帶有自身加固特點(diǎn)的粉煤灰來維持所需的80MPa。在127層以上,結(jié)構(gòu)需求減少至60MPa,混合10mm最大骨料也許就被使用了。高樓層的質(zhì)量控制,是為了滿足確保泵送混凝土到高樓層的需求,特別是要考慮周圍的溫度。施工地點(diǎn)的水泵包含兩個(gè)世界上最大的,能泵送混凝土通過150mm管道而壓力達(dá)到大
20、規(guī)模的350磅。</p><p><b> 5、建設(shè)</b></p><p> 迪拜建設(shè)采用最新的建筑技術(shù)和材料技術(shù),墻壁的形成采用的是SKE100自動(dòng)自爬模系統(tǒng)。圓形鼻柱模是由鋼板支撐,以及樓板是在MevaDec模板上澆注而成。墻加固是在距地面8m處加鋼筋;以及快速布置。</p><p> 結(jié)構(gòu)的施工程序是三個(gè)截面的中心核和平板成制品第
21、一;接著是羽翼塔和平板;在這之后是翅膀鼻柱和平板(圖1)。混凝土通過特別制造的Putzmeister泵泵送,盡可能的一次泵送到600m(1970英尺)的高度,以及產(chǎn)生350磅的壓力。</p><p> 由于測(cè)量技術(shù)的限制,一個(gè)特別的GPS監(jiān)控系統(tǒng)被用來監(jiān)控結(jié)構(gòu)的垂直性。這個(gè)測(cè)量工作由Doug Gayes先生指導(dǎo),他是迪拜塔主要的測(cè)量師,是三星BeSix Arabtech合資公司的。</p><
22、;p><b> 6、結(jié)論</b></p><p> 完成之后,迪拜塔將成為世界最高建筑。它代表了一個(gè)在使用最新技術(shù)、材料和施工技術(shù)和方法方面的重大收獲。為了提供一個(gè)高效的、有理性的結(jié)構(gòu)達(dá)到前所未見的高度。</p><p><b> 附件2:外文原文 </b></p><p> BURJ DUBAI: ENGI
23、NEERING THE WORLD’S</p><p> TALLEST BUILDING</p><p><b> SUMMARY</b></p><p> As with all super-tall projects, diffi cult structural engineering problems needed to be a
24、ddressed and resolved. This paper presents the approach to the structural system for the Burj Dubai Tower. </p><p> 1. STRUCTURAL SYSTEM DESCRIPTION</p><p> The goal of the Burj Dubai Tower is
25、 not simply to be the world’s highest building; it’s to embody the world’s highest aspirations. The superstructure is currently under construction and as of summer 2007 has reached over 135 stories. The fi nal height of
26、the building is a ‘well-guarded secret’. The height of the multi-use skyscraper will ‘comfortably’ exceed the current record holder of the 509 m(1671 ft) tall Taipei 101. The 280 000 m2 (3 000 000 ft2) reinforced concret
27、e multi-use tower is util</p><p> Designers purposely shaped the structural concrete Burj Dubai—‘Y’ shaped in plan—to reduce the wind forces on the tower, as well as to keep the structure simple and foster
28、constructability. The structural system can be described as a ‘buttressed’ core (Figures 1–3). Each wing, with its own high-performance concrete corridor walls and perimeter columns, buttresses the others via a six-sided
29、 central core, or hexagonal hub. The result is a tower that is extremely stiff laterally and torsionally. Sk</p><p> Each tier of the building sets back in a spiral stepping pattern up the building. The set
30、backs are organized with the tower’s grid, such that the building stepping is accomplished by aligning columns above with walls below to provide a smooth load path. This allows the construction to proceed without the nor
31、mal diffi culties associated with column transfers.</p><p> The setbacks are organized such that the tower’s width changes at each setback. The advantage of the stepping and shaping is to ‘confuse the wind’
32、. The wind vortexes never get organized because at each new tier the wind encounters a different building shape.</p><p> The tower and podium structures are currently under construction (Figure 1) and the p
33、roject is scheduled for topping out in 2008.</p><p> 2. STRUCTURAL ANALYSIS AND DESIGN</p><p> The center hexagonal reinforced concrete core walls provide the torsional resistance of the struc
34、ture similar to a closed tube or axle. The center hexagonal walls are buttressed by the wing walls and hammerhead walls, which behave as the webs and fl anges of a beam to resist the wind shears and moments. Outriggers a
35、t the mechanical fl oors allow the columns to participate in the lateral load resistance of the structure; hence, all of the vertical concrete is utilized to support both gravity and </p><p> The wall thick
36、nesses and column sizes were fi ne tuned to reduce the effects of creep and shrinkage on the individual elements which compose the structure. To reduce the effects of differential column shortening, due to creep, between
37、 the perimeter columns and interior walls, the perimeter columns were sized such that the self-weight gravity stress on the perimeter columns matched the stress on the interior corridor walls. The fi ve sets of outrigger
38、s, distributed up the building, tie all the ve</p><p> movements. Since the shrinkage in concrete occurs more quickly in thinner walls or columns, the perimeter column thickness of 600 mm (24 in.) matched t
39、he typical corridor wall thickness (similarvolume-to-surface ratios) (Figure 4b) to ensure the columns and walls will generally shorten at the same rate due to concrete shrinkage.</p><p> The top section of
40、 the tower consists of a structural steel spire utilizing a diagonally braced lateral system. The structural steel spire was designed for gravity, wind, seismic and fatigue in accordance with the requirements of AISC Loa
41、d and Resistance Factor Design Specifi cation for Structural Steel Buildings (1999). The exterior exposed steel is protected with a fl ame-applied aluminum fi nish.</p><p> The structure was analyzed for gr
42、avity (including P-Δ analysis), wind, and seismic loads using ETABS version 8·4. The three-dimensional analysis model consisted of the reinforced concrete walls, link beams, slabs, raft, piles, and the spire structu
43、ral steel system (Figure 4). The full 3D analysis model consisted of over 73 500 shells and 75 000 nodes. Under lateral wind loading, the building defl ections are well below commonly used criteria. The dynamic analysis
44、indicated the fi rst mode is lat</p><p> The reinforced concrete structure was designed in accordance with the requirements of ACI 318–02 (American Concrete Institute) Building Code Requirements for Structu
45、ral Concrete.</p><p> The Dubai Municipality (DM) specifi es Dubai as a UBC97 Zone 2a seismic region (with a seismic zone factor Z = 0·15 and soil profi le Sc). The seismic analysis consisted of a site
46、-specifi c response spectra analysis. Seismic loading typically did not govern the design of the reinforced concrete tower structure. Seismic loads did govern the design of the reinforced concrete podium buildings and th
47、e tower structural steel spire.</p><p> Dr Max Irvine (with Structural Mechanics & Dynamics Consulting Engineers located in Sydney, Australia) developed site-specifi c seismic reports for the project, i
48、ncluding a seismic hazard analysis. The potential for liquefaction was investigated based on several accepted methods; it was determined that liquefaction is not considered to have any structural implications for the dee
49、p-seated tower foundations.</p><p> 3. FOUNDATIONS AND SITE CONDITIONS</p><p> The tower foundations consist of a pile-supported raft. The solid reinforced concrete raft is 3·7 m (12 ft)
50、thick and was poured utilizing C50 (cube strength) self-consolidating concrete (SCC). In addition to the standard cube tests, the raft concrete was fi eld tested prior to placement by fl ow table (Figure 6), L-box, V-box
51、, and temperature. The raft was constructed in four separate pours (three wings and the center core). Each raft pour occurred over at least a 24-hour period. Reinforcement </p><p> The tower raft is 3·
52、7 m (12 ft) thick and therefore, in addition to durability, limiting peak temperature was an important consideration. The 50 MPa raft mix incorporated 40% fl y ash and a water cement ratio of 0·34. Giant placement t
53、est cubes of the raft concrete, 3·7 m (12 ft) on a side (Figure 7) were test poured to verify the placement procedures and monitor the concrete temperature rise, utilizing thermal couples in the test cubes and later
54、 checked by petrographic analysis.</p><p> The tower raft is supported by 194 bored cast-in-place piles. The piles are 1·5 m in diameter and approximately 43 m long, with a design capacity of 3000 tonn
55、es each. The tower pile load test supported over 6000 tonnes (Figure 8). The C60 (cube strength) SCC concrete was placed by the tremie method utilizing polymer slurry. The friction piles are supported in the naturally ce
56、mented calcisiltite/conglomeritic calcisiltite formations, developing an ultimate pile skin friction of 250–350 kPa (2·6–3</p><p> Owing to the aggressive conditions present due to the extremely corros
57、ive ground water, a rigorous program of anti-corrosion measures was required to ensure the durability of the foundations. Measures implemented included specialized waterproofi ng systems, increased concrete cover, the ad
58、dition of corrosion inhibitors to the concrete mix, stringent crack control design criteria, and an impressed current cathodic protection system utilizing titanium mesh (Figure 9).</p><p> 4. SUPERSTRUCTURE
59、 CONCRETE TECHNOLOGY</p><p> The design of the concrete for the vertical elements is determined by the requirements for a compressive strength of 10 MPa at 10 hours to permit the construction cycle and a de
60、sign strength/modulus of 80 MPa/44 GPa, as well as ensuring adequate pumpability and workability. The ambient conditions in Dubai vary from a cool winter to an extremely hot summer, with maximum temperatures occasionally
61、 exceeding 50 °C. To accommodate the different rates of strength development and workability loss, the </p><p> Ensuring pumpability to reach world record heights is probably the most diffi cult concre
62、te design issue, particularly considering the high summer temperatures. Four separate basic mixes have been developed to enable reduced pumping pressure as the building gets higher. A horizontal pumping trial equivalent
63、to the pressure loss in pumping to a height of 600 m (1970 ft) was conducted in February 2005 to determine the pumpability of these mixes and establish the friction coeffi cients. The current</p><p> It is
64、envisaged to change to a mix containing 14 mm maximum aggregate size and 20% fl y ash with full self-consolidating characteristics while maintaining the required 80 MPa. Above Level 127, the structural requirement reduce
65、s to 60 MPa, and a mix containing 10 mm maximum aggregate may be used. Extremely high levels of quality control will be required to ensure pumpability up to the highest concrete fl oor, particularly considering the ambie
66、nt temperatures. The pumps on site include two of the </p><p> 5. CONSTRUCTION</p><p> The Burj Dubai utilizes the latest advancements in construction techniques and material technology. The w
67、alls are formed using Doka’s SKE 100 automatic self-climbing formwork system (Figure 19). The circular nose columns are formed with steel forms, and the fl oor slabs are poured on MevaDec formwork. Wall reinforcement is
68、prefabricated on the ground in 8 m sections to allow for fast placement.</p><p> The construction sequence for the structure has the central core and slabs being cast fi rst, in three sections; the wing wal
69、ls and slabs follow behind; and the wing nose columns and slabs follow behind these (Figure 1). Concrete is pumped via specially developed Putzmeister pumps, able to pump to heights of 600 m (1970 ft) in a single stage a
70、nd generate 350 bar pressure.</p><p> Due to the limitations of conventional surveying techniques, a special GPS monitoring system has been developed to monitor the verticality of the structure. The constru
71、ction survey work is being supervised by Mr Doug Hayes, Chief Surveyor for the Burj Dubai Tower, with the Samsung BeSix Arabtech JV. </p><p> 6. CONCLUSION</p><p> When completed, the Burj Dub
72、ai Tower will be the world’s tallest structure. It represents a signifi cant achievement in terms of utilizing the latest design, materials, and construction technology and methods, in order to provide an effi cient, rat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 土建外文資料翻譯---迪拜塔:工程世界的最高建筑.doc
- 土建外文資料翻譯---迪拜塔工程世界的最高建筑(節(jié)選)
- 土建外文資料翻譯---迪拜塔工程世界的最高建筑(節(jié)選)
- 土建外文資料翻譯---迪拜塔:工程世界的最高建筑.doc
- 土建外文資料翻譯---迪拜塔:工程世界的最高建筑.doc
- 土建外文資料翻譯---迪拜塔:工程世界的最高建筑.doc
- 土木工程外文翻譯-- 迪拜的設(shè)計(jì)
- 迪拜債務(wù)藍(lán)調(diào)【外文翻譯】
- 土建畢業(yè)設(shè)計(jì)外文翻譯--電力塔
- 外文翻譯——預(yù)應(yīng)力混凝土建筑
- 建筑工程土建資料填寫范例
- 建筑工程土建資料填寫范例
- 迪拜借助債務(wù)市場(chǎng)發(fā)光【外文翻譯】
- 迪拜建筑
- 土建外文翻譯
- 建筑外文資料翻譯---土方工程的地基勘察與施工
- 土建外文翻譯5
- 土木工程外文資料翻譯--醫(yī)院建筑給水排水
- 學(xué)建筑的應(yīng)該知道土建資料
- 土建專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--建筑的組成部分
評(píng)論
0/150
提交評(píng)論