版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、貴州大學(xué)碩士學(xué)位論文基于生物免疫的動(dòng)態(tài)環(huán)境優(yōu)化算法及其應(yīng)用姓名:錢淑渠申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):運(yùn)籌學(xué)與控制論指導(dǎo)教師:張著洪20070401BiologicalimmunebasedimmuneoptimizationalgorithmsindynamicenvironmentsandtheirapplicationsAbstract刪Ieintelligentalgorithmsarcwidelyappliedtostaticopti
2、mizationproblems。aconsiderablenumberofvaluableachievementshavebeenreposedHoweverItisstudiedrarelytodealwithdynamicoptimizationproblems,inwhichthekeysolvingthisclassofproblemsistodesignintelligentoptimizationtechniquescap
3、ableofstronglytrackingthechangingenvironmentovertimeandachievingreasonabletradeoffbetweenperformanceeffectandefficiencySo,ithasbecomeanimportantresearchtopictodesignmoreadvancedintelligentoptimizationtechniquestocopewith
4、dynamicoptimizationproblemsFromtheangleofintelligentoptimization,recentlythemainresearchworkhasbeenfocosedonmodifyingclassicaIgeneticalgorithmsbutlessprogressTherefore,inthisdissertation,basedonthetheoryofbiologicalimmun
5、esystems,threekindsofimmuneoptimizationalgorithmsindynamicenvironmentsareproposedfordynamicsingle—objectiveoptimization,dynamicmultiobjectiveoptimizationandonlinegreenhousecontr01respectivelyThesealgorithmsareexaminedthr
6、mlghuuRl舐calexperiments,comparativeanalysisandapplicationsThemainworkissummedupasfollows:AAnovelimmuneoptimizationalgorithmindynamicenvironmentsisproposedtodeal謝111dynamicsin鰣eo場(chǎng)ectiveoptimizationproblemsIndesignofthealg
7、oriflun,severaloperatorsareestablished,ie,dynamicevolutionrelyingonantibodylearningantibodyrearrangementdependingongenedrift,dynamicalmemorypoolcomposedofmanymemorysubsetsbuiltupontheimmunemenlorycharacteristicsandthefun
8、ctionofdynamicmaintenanceinwhichthepoolutilizestheaveragelinkagetokeepthoseexcellentmemorycellsandenvironmentalidentifierandgenerationruleofinitialantibodypopulationsrelatedtodynamicsurveillanceThealgorithmpossessessuchp
9、ropertiesasstructuralsimplicityfeasibilityanddynamicalregulationoftheexecutiontimefordifferentenvironmentsExperimentalrasultsandcomparisonillustruteitssuperiorityincludingtheeffectivetradeofrbci3ⅣecnperfornlanCeeffectand
10、efficiencyaswellasthepotentialforcomplexdynamicalhi曲dimensionaloptimizationproblems&AnonlinegreenhousecontrolimmuneoptimizationalgorithmispropOsedtosolveaclassofclassicalgreenhousecontrolproblemswithdynamicenvironmentsIn
11、thealgorithm,dynamicmemorypoolisdesignedtopreserve山eexcellentantibodi黜fromthepreviousenvironmentsbyusingthedynamicupdatemechanismofmemoryeellsintheimnnnlesystemforreference,whilethesizesofevolvingpopulatioilsareadjusteda
12、ndtheirantibodiesarechosedynamicallyintermsoftheaveragedensitiesofthepopulationsBesides,antibodiespropagatetheirclonesbymeansofthn4raffinitiesassociatedtothegivenantigenThl|oughcomparisonwithseveralevolutionalgorithmsind
13、ynamicenvironments,numericalexperimentsshowthattheproposedalgorithmcantrackstronglychangingenvironmentswithgreatpracticalperspectiveCAdynamicmultiobjectiveinuBaneoptimizationalgorithraisproposedbasedollthecharacteristics
14、ofdynamicmultiobiecti、(eoptimizationandassociatedtosomemetaphorsoftheinlnlunesystemIndesignofthealgorithm,someantibodiesarechosetoparticipateinevolutionthroughsortinglevelselectionwhiletheaffinityofanantibodyispropOrtion
15、altotheaveragedensityofallantibodiesinits‘neighborhood,beingdependentonthepositionoftheantibodyOntheotherhand。eachcloneundergoesmutationwithitsmutationprobabilityconverselyproportionaltotheafIjni“ofitsparentandsuchimmune
16、functionsasimmnnememoryanddynamicmaintenancetogetherwitlItheaveragelinkagemethod,areusedtodesignenvironmentalmemorysetandmemoryp001“11lroughcomparisonwithtwepresentativeevolutionaryalgorithmsandaneighborsearchalgorithm,n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 動(dòng)態(tài)環(huán)境下多目標(biāo)優(yōu)化免疫算法及其應(yīng)用.pdf
- 復(fù)雜靜態(tài)環(huán)境與噪聲環(huán)境下的免疫優(yōu)化算法及其應(yīng)用.pdf
- 動(dòng)態(tài)粒子群優(yōu)化算法及其應(yīng)用.pdf
- 基于集群計(jì)算的免疫優(yōu)化算法及其應(yīng)用研究.pdf
- 基于免疫系統(tǒng)的優(yōu)化算法、模型及其應(yīng)用研究.pdf
- 基于動(dòng)態(tài)線性步長(zhǎng)的雙子群果蠅優(yōu)化算法及其應(yīng)用.pdf
- 基于生物免疫隱喻機(jī)制的AIS優(yōu)化算法研究.pdf
- 進(jìn)化動(dòng)態(tài)多目標(biāo)優(yōu)化算法及其應(yīng)用.pdf
- 動(dòng)態(tài)環(huán)境下微粒群優(yōu)化算法的研究及應(yīng)用.pdf
- 基于免疫算法的分類算法及其應(yīng)用研究.pdf
- 動(dòng)態(tài)環(huán)境中微粒群優(yōu)化算法研究及應(yīng)用.pdf
- 基于多目標(biāo)免疫進(jìn)化算法的動(dòng)態(tài)車輛路徑優(yōu)化研究.pdf
- 人工免疫算法優(yōu)化及其應(yīng)用研究.pdf
- 基于粒子群優(yōu)化算法的動(dòng)態(tài)多目標(biāo)優(yōu)化算法研究及應(yīng)用.pdf
- 基于IDP的動(dòng)態(tài)優(yōu)化及其應(yīng)用研究.pdf
- 基于免疫應(yīng)答原理的人工免疫算法及其應(yīng)用.pdf
- 基于Metropolis準(zhǔn)則的免疫算法研究及其應(yīng)用.pdf
- 基于免疫原理的優(yōu)化算法及應(yīng)用研究.pdf
- 基于免疫算法的化工過程優(yōu)化.pdf
- 免疫優(yōu)化算法及其在投資組合中的應(yīng)用研究.pdf
評(píng)論
0/150
提交評(píng)論