Existence Results for Brezis-Nirenberg Problems with Hardy Potential and Singular Coefficients.pdf_第1頁
已閱讀1頁,還剩75頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、In this dissertation, we consider the existence of non-trivial solutions to semi-linear BrezisNirenberg type problems with Hardy potential and singular coefficients. And the existence of multiple positive solutions for s

2、ingular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent. Some new conclusions are obtained. The main contents of the dissertation are as follows:
   Chapter one summarize s

3、tatement of the following problems: the existence of non-trivial solutions to semi-linear Brezis-Nirenberg type problems with Hardy potential and singular coefficients. And the existence of multiple positive solutions fo

4、r singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent. Moreover summarize of the main results.
   In chapter two we shall study the corresponding eigenvalue problem, a

5、nd get some basic properties of eigenvalues and asymptotic estimates of the eigenfunctions and approximating eigenfunctions.
   In chapter three, we consider the extremal functions of the best embedding constant, and

6、 applying Bliss Lemma([1]) to prove the explicit form of extremal function. And for the use in next chapter derive some estimates of the cut-off functions of extremal functions, which shows the concentration of extremal

7、functions near x = 0.
   Chapter four, applying different variational for distinct cases of those parameters in the equation, first we prove that Iλ, μsatisfies the (PS)c condition if the energy level β is under a th

8、reshold. Secondly, we recall some variational principles, and show that Iλ, μsatisfies the geometric conditions of those variational principles in each case, hence get the (PS)β sequence for some minimax values β. Thirdl

9、y, by a fine balance between the blow-up of eigenfunctions and concentration of extremal functions near x = 0, we try to show that minimax values β are under the threshold, and thus obtain two existence results of non-tr

10、ivial solutions to semi-linear Brezis-Nirenberg type problems in resonant case and non-resonant case.
   In chapter five, we shall apply Ekeland Varitional Principle to obtain the first nonnegative solution of (ρλ,μ)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論