外文翻譯-伊朗國家電網(wǎng)利用人工神經(jīng)網(wǎng)絡(luò)的短期負荷預(yù)測_第1頁
已閱讀1頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、英文原文ShtTermLoadFecastingofIranNationalPowerSystemUsingArtificialNeuralwkGenerationTw.BarzaminiM.B.MenhajSh.KamalvA.TajbakhshAbstract—Thispaperpresentsaneurobasedshttermloadfecasting(STLF)methodfIrannationalpowersystem(IN

2、PS)itsregions.Thisisanimprovedversionoftheonegivenin[1].ThearchitectureoftheproposedwkisathreelayerfeedfwardneuralwkwhoseparametersaretunedbyLevenbergMarquardtBP(LMBP)augmentedbyanEarlyStopping(ES)methodtriedoutfincreasi

3、ngthespeedofconvergence.Insteadofseasonaltraininganinputasamonthindicatisaddedtotheinputvects.TheshttermloadfecastingsimulatdevelopedsofarpresentssatisfactybetterresultsfonehouruptoaweekpredictionofINPSloadsregionofINPSB

4、akhtarRegionElectricCo(BREC).I.INTRODUCTIONLoadfecastinghasalwaysbeentheessentialpartofanefficientpowersystemplanningoperation.Generallytherearetwogroupsoffecastingmodelstraditionalmodels(modelbasedtechniques)moderntechn

5、ique(knownasmodelfreetechniques).Traditionalloadfecastingmodelsaretimeseriesregressionanalysis.Inrecentyearscomputationalintelligencemethodsaremecommonlyusedfloadfecasting[210].Multilayerfeedfwardneuralwksasuniversalappr

6、oximatesareverysuitablefloadfecastingbecausetheyhaveremarkableabilitytoapproximatenonlinearfunctionswithanydesiredaccuracy.ionoftheinputoutputtrainingdatainputvectoftheneuralwkplaysacrucialrole.Essentiallyinourcase(loadf

7、ecastingproblem)theMLPbasedwksaregreatlyaffectedbyionofinputs.DaytypeMonthtypehisticalloaddataweatherinfmation.Howtochoosethehourlyloadinputsfeachweeklygroupplaysanimptantroleinimprovingwksperfmance(sectionII).ThesecondN

8、irooResearchInstitute(NRI)STLF(NSTLFII)programisbasedonathreelayerfeedfwardneuralwkbuildingblock.FthetrainingofthisMLPinsteadofconventionalbackpropagation(BP)methodstheLevenbergMarquardtBP(LMBP)EarlyStopping(ES)methodswa

9、semployedindertoreachtheoptimumwk’sparametersfasteralsoinsteadofseasonaltrainingthemonthinputwasaddedtotheinputvects(sectionIII).SomeexamplesoftheNSTLFIIperfmancearepresentedusingINPSactualloadtemperaturedataoftheyear200

10、0regionofINPSBakhtarregionelectricalCo(BREC)actualloadtemperaturedataoftheyear2002(sectionIV).FuturewkscanaddressthefuzzysystemapplicationfspecialconditionsreshapingfwardMLPathreelayerfeedfwardMLPbuildingblockhasbeenused

11、.Generallyneuralwkswithahiddenlayerhavetheremarkableabilitytoapproximatemostnonlinearfunctionswithadesiredaccuracyifthereareenoughhiddenneurons.TherefethemodelshowninFig.1iscomposedofthreelayerseachlayerhasafeedfwardconn

12、ection.InthismodelinputsfeachweeklygroupareseparatelytrainedbyanMLP.TheinputlayerfhourlyloadfecastofeachweeklygroupSaturdayswkdaysThursdaysFridayshasrespectively13191619neurons(consistingofedloadlags3representatives’feca

13、stedtemperatures1nodetoindicatemonth).Throughadeepinvestigationwefoundthatahiddenlayerwith5neuronswksquitewell.Ofcoursethewkhasoneoutputneuron(Thefecastedload).TovalidatethequalityofthedevelopedMLPwerunitwithyear2000’loa

14、ddataofINPSyear2002’loaddataofBRECindertobeabletojudgethemeritofthemethod.Neuronsinthehiddenoutputlayershavenonlineartransferfunctionknownasthe“tangentsigmoid“(tansig)function:Fig.1.TheMLParchitecturefeachweeklygroupThew

15、eightedinputsreceivedbyatansignodearesummedpassedthroughthisnonlinearfunctiontoproduceanoutput.Thetansigfunctiongeneratesoutputsbetween–11itsinputsshouldbeinthesamerange.AsaresultitisnecessarytolimittheMLPinputstargetout

16、puts.Meanstarddeviationminimum(min)Maximum(max)nmalizationmethodshavebeentestedminmaxMethodhasbeened:Thisnmalizationmethodhasalsotheadvantageofmappingthetargetoutputtothenonsaturatedsectoftansigfunction.Thisprocesshelpsi

17、nimprovingtheaccuracyofboththelearningfecastingmodes.TheMLPscanbetrainedfeachweeklygroupofayeartherelatedweightsbiaseswillbegainedusedffecasting.AuserfriendlyinterfacehasalsobeendesignedfNSTLFIIwhichgivestheuserstheabili

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論