2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩260頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1,Power System Operation & Control,,,2,,Power System Analysis,,Steady-State,Transient,,? Basic Concepts,? Parameters & Equivalent Circuits,? Simple Power System Analysis,? Power Flow Analysis,? Active Power &

2、 Frequency Regulation,,? Faults (Symmetrical & Unsymmetrical),? Short-Circuit of Synchronous Machines,? Reactive Power & Voltage Regulation,? Practical Calculation for f(3),? Symmetrical Components and Sequence N

3、etworks,? Unsymmetrical Fault Calculations,Stability,? Basic Concepts,? Steady-State or Small Signal Stability,? Transient Stability,? Dynamic Stability,,3,,Power System,,Operation,Control,? Power Flow Analysis(2),? Econ

4、omic DIspatch(2),? Optimal Power Flow(2),? Unit Commitment(2),? Load Frequency Control(4),? Control of Interconnected Systems(4),? Voltage & Reactive Power Control(4),? Advanced Topics(6),,,含AGC,含Interchange of power

5、 and energy,4,,States of Power System Operation,,Normal Secure State,Alert State,Emergency State,In Extremis State,Restorative State,All equality (E) and inequality (I) constraints are satisfied.,The security level is be

6、low some threshold of adequacy.,Inequality (I) constraints are violated.,Both E and I constraints are violated. The violation of equality constraints implies that parts of system load are lost.,This is a transitional sta

7、te in which I constraints are met from the emergency control actions taken but the E constraints are yet to be satisfied.,Economic operation,Preventive control,Emergency control action (heroic measures),Emergency control

8、 action should be directed at avoiding total collapse.,Restorative control,5,,Equality constraints (E) express balance between the generation and load demand.,Inequality constraints (I) express limitations of the physica

9、l equipment.,6,,1 培養(yǎng)目標,,本科生:知識,研究生:創(chuàng)新,2 教學(xué)特點,,?宏觀為主,適當深入,?涉及面廣,?以思考、提出問題引領(lǐng)學(xué)習,?注意問題的本質(zhì)、背景、新問題,例,,繼保:,電磁型,→晶體管型,→集成電路型,→微機型,勵磁:,主系統(tǒng):,直流勵磁機,→交流勵磁機,→靜止、旋轉(zhuǎn),控制系統(tǒng):,電磁(相復(fù)勵),→電子式(晶體管、集成電路),→微機型,,,7,,,,,,,,References1 Operation a

10、nd Control in Power Systems(422p,2008,BS Publications, P.S.R.Murty)2 Power Generation, Operation, and Control_2nd Edition 發(fā)電、運行與控制(592p,1996,Wiley,Allen J.Wood, Bruce F.Wollenberg)3 Electric Energy Systems:Analysis and

11、 Operation 電能系統(tǒng):分析與運行(658p,2009,CRC Press,Antonio Gomez-Exposito,etc)4 Power System Analysis(812p,1994,McGraw-Hill,John J.Grainger, William D.Stevenson)5 Modern Power Systems Analysis(573p,2008,Springer,Xi-Fan Wang王錫凡,

12、Yonghua Song宋永華, Malcolm Irving) 有中文版,但內(nèi)容不盡相同6 Power System Dynamics:Stability and Control_2nd Edition (660p,2008,Wiley,Jan Machowski, Janusz W.Bialek, James R.Bumby)7 Power System Dynamics and Stability 電力系統(tǒng)動態(tài)與穩(wěn)定性(487

13、p,1997,Wiley,Jan Machowski, Janusz W.Bialek, James R.Bumby)8 Power System Control and Stability_2nd Edition 電力系統(tǒng)控制與穩(wěn)定性(683p,2003,IEEE,P.M.Anderson,A.A.Fouad),8,,9 Power System Control and Stability 電力系統(tǒng)控制與穩(wěn)定性(471p,1977

14、,Iowa State University Press, P.M.Anderson, A.A.Fouad)10 Power System Stability and Control 電力系統(tǒng)穩(wěn)定性與控制(1196p,1994,McGraw-Hill Professional, Prabha Kundur)11 Power System Stability and Control 電力系統(tǒng)穩(wěn)定性與控制(353p,2006,CRC P

15、ress, Leonard L.Grigsby)12 Power Systems in Emergencies:From Contingency Planning to Crisis Management 緊急控制(399p,2001,Wiley,U.G.Knight)13 Real-Time Stability Assessment in Modern Power System Control Centers 現(xiàn)代電力系統(tǒng)控制中心

16、實時穩(wěn)定性評估(456p,2009,Wiley-IEEE Press,S.C.Savulescu)14 Voltage Stability of Electric Power Systems (375p,1998,Springer,Thierry Van Cutsem, Costas Vournas)15 Nonlinear Control Systems and Power System Dynamics 非線性控制系統(tǒng)與電力系統(tǒng)

17、動態(tài)(201x2p,2001,Springer,Qiang Lu 盧強, Yuanzhang Sun 孫元章, Shengwei Mei 梅生偉),9,,,,,,16 Robust Control in Power Systems 電力系統(tǒng)魯棒控制(207p,2005,Springer,Bikash Pal,Balarko Chaudhuri)17 Robust Power System Frequency Control 魯棒電力系

18、統(tǒng)頻率控制(225p,2009,Springer,Hassan Bevrani)18 Power Electronic Control in Electrical Systems 電力系統(tǒng)中的電力電子控制(451p,2002,Newnes,Enrique Acha,etc)19 Inter-area Oscillations in Power Systems:A Nonlinear and Nonstationary Perspec

19、tive 電力系統(tǒng)區(qū)域間振蕩(278p,2009,Springer,Arturo Roman Messina)20 HVDC and FACTS Controllers:Applications of Static Converters in Power System 高壓直流與FACTS控制器(322p,2004,Kluwer,Vijay K.Sood)21 Adaptive Voltage Control in Power Sy

20、stems:modeling,design and applications 電力系統(tǒng)自適應(yīng)電壓控制(170p,2007,Springer,Giuseppe Fusco,Mario Russo)22 Optimal Economic Operation of Electric Power Systems(Mathematics in Science and Engineering,Vol.142) 電力系統(tǒng)最優(yōu)經(jīng)濟運行(298p,19

21、79,Academic Press,M.E.El-Hawary,G.S.Christensen),10,,23 Optimization of Power System Operation 電力系統(tǒng)運行優(yōu)化(623p,2009,IEEE-Wiley,Jizhong Zhu)24 Market Operations in Electric Power Systems:Forecasting,Scheduling,and Risk Man

22、agement 電力系統(tǒng)市場運營:預(yù)測、調(diào)度與風險管理(549p,2002,Wiley,Mohammad Shahidehpour,etc)25 Modern Heuristic Optimization Techniques:Theory and Applications to Power Systems(616p,2008,Wiley-IEEE, Kwang Y.Lee, Mohamed A.El-Sharkawi)26 Rel

23、iability Evaluation of Power Systems_2nd Edition 電力系統(tǒng)可靠性評估(534p,1996,Plenum Press, Roy Billinton, Ronald N.Allan)27 New Computational Methods in Power System Reliability 電力系統(tǒng)可靠性新計算方法(418p,2008,Springer,David Elmakias)2

24、8 Risk Assessment of Power Systems:Models, Methods, and Applications 電力系統(tǒng)風險評估:模型、方法與應(yīng)用(347p,2005,Wiley-IEEE,Wenyuan Li李文沅)29 Power Distribution System Reliability:Practical Methods and Applications 配電系統(tǒng)可靠性:實用方法與應(yīng)用(556p,

25、2009,Wiley-IEEE,Ali A.Chowdhury,Don O.Koval),11,,,,,30 Emerging Techniques in Power System Analysis(209p,2010,高等教育出版社+Springer, Zhaoyang Dong董朝陽,Pei Zhang)31 Power System State Estimation:Theory and Implementation 電力系統(tǒng)狀

26、態(tài)估計:理論與實現(xiàn)(336p,2004,Marcel Dekker,Ali Abur, Antonio Gomez Exposito)32 Embedded Generation (IET Power and Energy,31)(293p,2008,IET,Nick Jenkins,etc),12,,Chap.1 Power Flow Analysis,1.1 Network Equations,1.1.1 Nodal voltag

27、e equations based on a nodal admittance matrix,,,? Properties of a nodal admittance matrix,symmetric,sparse,,— self-admittance,— mutual admittance,13,,1.1.2 Nodal voltage equations based on a nodal impedance matrix,? Pro

28、perties of a nodal impedance matrix,symmetric,full,,,,— self-impedance (input impedance),— mutual impedance (transfer impedance),,,14,,1.2 Nodal Power Equations,,,,,,,,,15,,1.2.1 Nodal power equations,,Number of variable

29、s:,,1.2.2 Classification of node types,PQ nodes: P、Q are specified as known parameters,,4(6)?? 、 、 、,2,Number of equations:,PV nodes: P、V are specified as known parameters,Slack nod

30、e: V=constant,,16,,,1.2.3 Constrains for power flow calculation,,17,,1.3 Jacobi method & Gauss-Seidel method,1.3.1 Jacobi method,,,,,,……,? Convergence condition,18,,,1.3.2 Gauss-Seidel method,,? Basic concept of Gaus

31、s-Seidel method,? Power flow calculation based on Gauss-Seidel method,,,,19,,1.4 Newton-Raphson method,1.4.1 Basic concept of Newton method,? Convergence condition,,20,,1.4.2 Newton method for simultaneous nonlinear equa

32、tions,? Convergence condition,21,,1.4.3 Power flow calculation based on Newton-Raphson method,? Rectangular coordinates form,,? Polar coordinates form,? Nodal power error equations (polar coordinates form),,22,? Process

33、of solving equations,23,1.5 P-Q Decoupled method,? Primary simplification,? Secondary simplification,,→ Fast decoupled method,24,Chap.2 Economic Dispatch,2.1 Characteristics of Power Generation Units,2.1.1 Characteristic

34、s of Steam Units,Boiler-turbine-generator unit,Input-output curve of a steam turbine generatorHeat=f(P), or Fuel cost=f(P),25,Incremental heat (cost) rate characteristic?H/?P =f(P), or ?F/?P =f(P),Unit (net) heat rate

35、characteristic of a steam turbine generator unitH/P =f(P),Approximate representations of the incremental heat rate curve?H/?P =f(P),,26,2.1.2 Variations in Steam Unit Characteristics,Characteristics of a steam turbine

36、generator with four steam valves,27,2.1.3 Cogeneration Plants,,steam,electricity,Industrial process、district heating,,Fuel input required for steam demand and electrical output for a single extraction steam turbine gener

37、ator,28,2.1.4 Hydroelectric Units,Hydroelectric unit input-output curve,Incremental water rate curve for hydroelectric plant,29,Input-output curves for hydroelectric plant with a variable head,Input-output characteristic

38、s for a pumped storage hydroplant with a fixed, net hydraulic head,30,2.2 Economic Dispatch of Thermal Units,2.2.1 The economic dispatch problem,Objective function,Constrain function,Lagrange function,Optimal condition,o

39、r,equal incremental cost criterion,,31,2.2.2 Thermal system dispatching with network losses consideration,Objective function,Constrain function,Lagrange function,Optimal condition,coordination equations,,,or,"penalt

40、y factor" of bus i,,32,2.2.3 Transmission system effects,cause transmission lines overloaded,,constrains on power flow through the network elements,,power flow equations,,generation scheduling equations,ignore the c

41、onstrains on flows,,include the complete transmission system model,with no transmission effects considered:,loss formulae,,OPF,,including the effects of incremental losses:,,,33,Y,N,N,Y,給定迭代初始值,求與 對應(yīng)的,,,K=0,,,

42、,,,,,,,,開 始,結(jié) 束,,,,,2.2.4 The λ-iteration method,,K達到規(guī)定的次數(shù)嗎?,,Y,,,,N,34,2.2.5 Gradient methods of economic dispatch,? Gradient search,,direction of maximum ascent,direction of maximum descent,a scalar to guarantee that t

43、he process converges,,,,,? Economic dispatch by gradient search,Lagrange function,,35,2.2.6 Newton method,? Aim of economic dispatch,? Lagrange function,,36,2.2.7 Economic dispatch with piecewise linear cost functions,(a

44、) start with all of them at Pmin,(b) then begin to raise the output of the unit with the lowest incremental cost segment,(c) If this unit hits the right-hand end of a segment, or if it hits Pmax, we then find the unit wi

45、th the next lowest incremental cost segment and raise its output,(d) Eventually, we will reach a point where a unit's output is being raised and the total of all unit outputs equals the total load, or load plus losse

46、s,37,2.2.8 Economic dispatch using dynamic programming,? nonconvex input-output curves,? cannot use an equal incremental cost methodology,multiple values of MW output for any given value of incremental cost,,? dynamic pr

47、ogramming,= an allocation problem,generate a set of outputs, at discrete points, for an entire set of load values,rate limit,,38,2.2.9 Base point & participation factors,? base point:,a given schedule,Load changes (b

48、y a reasonably small amount),? new schedule,how much each generating unit needs to be moved (i.e., "participate" in the load change),,,,assume that both and exist,39,2.2.10 Economic dispatch versus unit

49、commitment,ED,N units already connected to the system,Purpose,find the optimum operating policy for these N units,UC,N units available,a forecast of the demand to be served,Given that there are a number of subsets of the

50、 complete set of N generating units that would satisfy the expected demand, which of these subsets should be used in order to provide the minimum operating cost?,Problem,Problem,a given demand to be served,Definition:,ma

51、y be extended over some period of time ( 24 h or a week),more complex than ED,more difficult to solve mathematically,(integer variables),,,,,,40,,Chap.3 Unit Commitment,3.1 Introduction,? Load variation:,Hourly,,daily,,s

52、easonally,,? Unit commitment:,commit enough units and leave them on line,? It is quite expensive to run too many generating units.,41,? Example 5-1: Unit combination,Unit 1:,Unit 2:,Unit 3:,Total load:,,,,42,? Example 5-

53、2: Unit commitment schedule using shut-down rule,? other constraints ?? other phenomena ?,43,3.1.1 Constraints in Unit Commitment,? Spinning reserve,? Thermal Unit Constraints,Minimum up time,Minimum down time,Crew cons

54、traints,? Other Constraints,Hydro-Constraints,Must Run,Fuel Constraints,be allocated between fast- and slow-responding units,, or,be spread around the power system,"scheduled reserves" or "off-line"

55、reserves,quick-start diesel or gas-turbine units,hydro-units,pumped-storage hydro-units,,,time to come up to full capacity,,,,44,3.2 Unit Commitment Solution Methods,? Assumptions,must establish a loading pattern for M p

56、eriods,have N units to commit & dispatch,M load levels & operating limits on the N units: any one unit can supply the individual loads, and any combination of units can also supply the loads,,? The total number o

57、f combinations enumeration (brute force),for each period (hour),for the total period of M,M =24 h,,? Solution methods,Priority-list schemes,Dynamic programming (DP),Lagrange relation (LR),,45,3.2.1 Priority-list Methods,

58、? Example 5-3: Construct a priority list for the units of Example 5-1,the full-load average production cost,priority-list based on the average production cost,commitment scheme (ignoring min up/down time, start-up costs,

59、 etc.),46,? At each hour when load is dropping, determine whether dropping the next unit on the priority list will leave sufficient generation to supply the load plus spinning-reserve requirements. If not, continue opera

60、ting as is; if yes, go on to the next step.,? Priority-list Schemes,? Determine the number of hours, H, before the unit will be needed again. That is, assuming that the load is dropping and will then go back up some hour

61、s later.,? If H is less than the minimum shut-down time for the unit, keep commitment as is and go to last step; if not, go to next step.,? Calculate two costs. The first is the sum of the hourly production costs for the

62、 next H hours with the unit up. Then recalculate the same sum for the unit down and add in the start-up cost for either cooling the unit or banking it, whichever is less expensive. If there is sufficient savings from shu

63、tting down the unit, it should be shut down, otherwise keep it on.,?Repeat this entire procedure for the next unit on the priority list. If it is also dropped, go to the next and so forth.,Power Generation,Operation,and

64、Control_2nd Edition 發(fā)電、運行與控制(592p, 1996, Wiley, Allen J.Wood,Bruce F.Wollenberg), page141,47,Step (1): Compute the minimum average production cost of all units, and order the units from the smallest value of μ min . Form

65、 the priority list.Step (2): If the load is increasing during that hour, determine how many units can be started up according to the minimum downtime of the unit.Then select the top units for turning on from the priori

66、ty list according to the amount of load increasing.Step (3): If the load is dropping during that hour, determine how many units can be stopped according to the minimum up time of the unit. Then select the last units for

67、 stopping from the priority list according to the amount of load dropping.Step (4): Repeat the process for the next hour.,? Priority-list Schemes (another description),Optimization of Power System Operation 電力系統(tǒng)運行優(yōu)化(623

68、p,2009,IEEE-Wiley, Jizhong Zhu), page254,48,? Check at the end of every hour of operation. if the load demand has fallen. If the demand has decreased check if the last unit in the priority list is dropped, the load deman

69、d can be met, satisfying the spinning reserve requirement. Status quo is maintained if the demand cannot be met.,? If it is possible to drop the unit in step I, then determine the number of hours '"h" befor

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論