版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> Air quality during the 2008 Beijing Olympic Games</p><p> Streets D G, Fu J S, Jang C J, et al. Air quality during the 2008 Beijing Olympic games[J]. Atmospheric environment, 2007, 41(3): 480-492
2、.</p><p><b> Abstract</b></p><p> China is taking major steps to improve Beijing’s air quality for the 2008 Olympic Games. However, concentrations of fine particulate matter and oz
3、one in Beijing often exceed healthful levels in the summertime. Based on the US EPA’s Models-3/CMAQ model simulation over the Beijing region, we estimate that about 34% of PM2.5 on average and 35–60% of ozone during high
4、 ozone episodes at the Olympic Stadium site can be attributed to sources outside Beijing. Neighboring Hebei and Shandong Provinces and</p><p><b> 翻譯</b></p><p> 中國正在采取重要措施來改善2008年北
5、京奧運(yùn)會(huì)期間的空氣質(zhì)量。然而北京的細(xì)顆粒物和臭氧在夏季經(jīng)常超過健康限制?;诿绹鳨PA的第三代/CMAQ模型模擬北京區(qū)域,我們估計(jì)在奧林匹克體育場位置附近,大約平均有34%的PM2.5和臭氧異常事件中35%-60%的臭氧是來自于北京之外地區(qū)的區(qū)域傳輸。鄰近的河北省和山東省以及天津自治區(qū)對(duì)于北京的空氣質(zhì)量均有重要影響。在持續(xù)的南風(fēng)下,河北省對(duì)于北京市PM2.5的貢獻(xiàn)率能夠達(dá)到50%-70%,對(duì)于臭氧貢獻(xiàn)率能夠達(dá)到20-30%.僅控制北京當(dāng)
6、地的污染源不足以達(dá)到奧運(yùn)會(huì)的空氣質(zhì)量目標(biāo)。因此,目前北京急需區(qū)域空氣質(zhì)量管理政策研究和新的減排控制策略來確保滿足2008年的空氣質(zhì)量目標(biāo)。</p><p> Conclusions</p><p> There is no doubt that the measures planned to limit air pollution in Beijing will greatly imp
7、rove Beijing’s air quality for the period of the 2008 Olympic Games. But will they be sufficient to achieve the stated objectives? This study shows that, even in the limit that Beijing generates no manmade emissions, lev
8、els of fine PM and ozone could still be high and could exceed healthful levels under unfavorable meteorological conditions. Because the limit of zero emissions cannot be achieved in prac</p><p><b> 翻譯
9、</b></p><p> 這些限制北京空氣污染的措施無疑能夠大幅度改善北京在2008年奧運(yùn)會(huì)期間的空氣質(zhì)量。但是這足以達(dá)到公開聲明的目標(biāo)么?這個(gè)研究表明盡管在北京不產(chǎn)生人為源的極端情況下,在不理想的氣象條件下,細(xì)顆粒物和臭氧的濃度水平依然很高并且能夠超過健康限值。因?yàn)榱闩欧诺臉O端情況無法在實(shí)際中應(yīng)用,并且中國目前處于驚人的的經(jīng)濟(jì)增長期,所以在2008年,更高的區(qū)域排放和更高的細(xì)顆粒物濃度與臭氧濃度
10、的威脅相當(dāng)真實(shí)。北京夏季的空氣質(zhì)量由氣象條件和地理?xiàng)l件所限定的。典型的高溫高濕低風(fēng)速,附近的丘陵限制了污染物的流通擴(kuò)散。因此,區(qū)域污染物比如PM2.5和臭氧會(huì)積累超過數(shù)日——通常直到風(fēng)吹散或者被雨水沉降。我們的模型表明距離北京較遠(yuǎn)的地方的污染源依然對(duì)于北京空氣質(zhì)量有相當(dāng)?shù)挠绊?。我們推薦新的措施和建模研究來進(jìn)一步調(diào)研中國區(qū)域性空氣質(zhì)量的本質(zhì),同時(shí)為了北京奧運(yùn)會(huì)的健康空氣質(zhì)量,需要考慮另外的北京附近省份的減排措施。</p>&
11、lt;p> Comparisons between FLUENT and ADMS for atmospheric dispersion modelling</p><p> Riddle A, Carruthers D, Sharpe A, et al. Comparisons between FLUENT and ADMS for atmospheric dispersion modelling[J
12、]. Atmospheric environment, 2004, 38(7): 1029-1038.</p><p><b> Abstract</b></p><p> The dispersion of gases in complex situations such as the case of buildings in close proximity i
13、s a difficult problem, but important for the safety of people living and working in such areas. Computational fluid dynamics (CFD) provides a method to build and run models that can simulate gas dispersion in such geomet
14、rically complex situations; however, the accuracy of the results needs to be assessed. As a first step in such an assessment, this study considers the simulation of the dynamics of the</p><p> When FLUENT w
15、as set up to simulate the neutrally stable atmospheric boundary layer, the mean velocity profiles were well predicted and were maintained with downwind distance. The algebraic Reynolds stress turbulence model provided th
16、e best predictions for the turbulence kinetic energy (TKE) and dissipation. The dissipation rate was maintained throughout the length of the model domain and, on average, the TKE levels were within 80% of the expected va
17、lues up to a height of 100 m, but at the ground</p><p> Overall, the CFD simulations with the LP method were satisfactory; however, they could not be considered as an appropriate alternative to a model such
18、 as ADMS for normal atmospheric dispersion studies because of the much larger run times and the greater complexity of setting up model runs. CFD is more appropriate for applications that involve complex geometry that cou
19、ld not be simulated using ADMS; however, further studies are required to assess the ability of CFD to calculate dispersion in such</p><p><b> 翻譯</b></p><p> 氣體在復(fù)雜情況下的擴(kuò)散是一個(gè)很困難的問題,比如
20、在建筑物附近的流動(dòng)就比較難以計(jì)算,但是這卻對(duì)于在這區(qū)域內(nèi)生活和居住的人的健康安全非常重要。計(jì)算流體力學(xué)提供了一種方法,通過建立和運(yùn)行模型來模擬復(fù)雜幾何外形的氣體擴(kuò)散;然而這種結(jié)果的準(zhǔn)確性需要探討評(píng)估。在評(píng)估的第一步,本研究通過FLUENT CFD模擬基礎(chǔ)大氣邊界層的動(dòng)力特性,并且預(yù)測氣體從一個(gè)單煙囪的擴(kuò)散。將CFD模擬結(jié)果與ADMS的預(yù)測結(jié)果相比較,ADMS有一個(gè)得到很好驗(yàn)證的準(zhǔn)高斯模型。</p><p> 當(dāng)
21、FLUENT被設(shè)定為模擬中立穩(wěn)態(tài)大氣邊界層時(shí),預(yù)測平均速度輪廓較好,并且能夠在低風(fēng)距離下維持較好。代數(shù)雷諾應(yīng)力湍流模型為湍流動(dòng)能(TKE)與損耗提供了最好的預(yù)測。在整個(gè)模型長度的域內(nèi),損耗率能夠被很好地保持,并且在100m高度的TKE水平測預(yù)測準(zhǔn)確值能夠達(dá)到80%,在地面會(huì)降低到50%的入口值。使用更簡單的k-ε模型預(yù)測得到的TKE值更少。分別通過對(duì)流擴(kuò)散(AD)、拉格朗日顆粒物軌跡法(LP)和大渦模擬方法來模擬煙羽的傳播。LP方法能夠
22、給出最好的結(jié)果;水平和垂直煙羽分離與ADMS預(yù)測的相似,而地面濃度和煙羽中心線濃度傳播與ADMS值相似。然而相對(duì)于ADMS,,模擬得到的地面濃度水平隨著距離的變化上升較快。對(duì)于AD方法,在較高地面濃度下水平側(cè)風(fēng)煙羽傳播的預(yù)測值比ADMS明顯偏低。這可能是由FLUENT中各項(xiàng)同向性的方程所導(dǎo)致的。LES模擬結(jié)果在AD于LP預(yù)測結(jié)果之間。</p><p> 綜上,使用LP方法的CFD模擬最令人滿意。然而,他們在大氣
23、擴(kuò)散研究中不能被認(rèn)為是ADMS等一個(gè)合適可選的模型,因?yàn)檫\(yùn)算時(shí)間巨大并且設(shè)定模型的較為復(fù)雜。CFD更適合于在復(fù)雜幾何下ADMS不能模擬的情況。然而,進(jìn)一步的研究需要評(píng)估CFD計(jì)算這種情況的能力,例如,繞建筑群流動(dòng)和在一系列氣態(tài)穩(wěn)定條件,而不是本篇論文中的中性穩(wěn)態(tài)。</p><p> Conclusions</p><p> CFD has the potential to be an
24、important tool for simulating wind flow and plume dispersion in areas with many buildings in close proximity, such as an industrial site. In order to have confidence in the results from such simulations, validation is re
25、quired either for each site modelled or in the form of a more generic study. This work has focused on the ability of a particular CFD code (FLUENT) to simulate the atmospheric boundary layer flow and plume dispersion fro
26、m an isolated stack for neutr</p><p> When FLUENT was set up to simulate the atmospheric boundary layer for neutrally stable conditions, the mean velocity profiles were well predicted and were maintained wi
27、th downwind distance. The algebraic Reynolds stress turbulence model (RSM), which calculates the individual Reynolds stresses using differential transport equations (Gibson and Launder, 1978; Launder, 1989; Launder et al
28、., 1975), provided the best predictions for the TKE and dissipation, whereas thek2e turbulence model (Launder an</p><p> Plume spread from an isolated stack was predicted with FLUENT using three different a
29、pproaches.</p><p> For the AD method the horizontal cross-wind plume spread was significantly lower than predicted by ADMS resulting in higher ground level concentrations than expected. This effect was attr
30、ibuted to the isotropic formulation of the turbulent diffusion in the AD equation, despite the RSM turbulence model predicting individual Reynolds stresses for the different co-ordinate directions. </p><p>
31、 The LP method is based on the stochastic tracking of particles using the individual sub-grid turbulent fluctuations from the RSM model, thus giving a non-isotropic formulation. The FLUENT LP code did not predict concent
32、rations, but the particle tracks were saved to file and then post-processed to give concentrations. This method gave the best results for plume dispersion; the horizontal and vertical plume spreads were similar to ADMS a
33、nd ground level and plume centre line concentrations were clo</p><p> The LES results were intermediate between the AD and LP predictions with horizontal and vertical plume spreads that were lower than expe
34、cted. The LES method is time varying and was expensive in terms of CPU requirement.</p><p> Overall, the CFD simulations with the LP method were satisfactory. However, note that the CFD model did not take a
35、ccount of meandering of the wind direction and was therefore compared with ADMS for a short (3 min) averaging time, whereas typical atmospheric dispersion calculations use averaging times of 1 h. The CFD method could not
36、 be considered as an appropriate alternative to a model such as ADMS for normal atmospheric dispersion studies because of the much larger run times and the greater co</p><p> The setup of FLUENT for atmosph
37、eric dispersion requires consideration of the grid resolution, surface roughness, inlet conditions, discretisation methods and the selection of appropriate turbulence and dispersion models. The recommended setup conditio
38、ns determined from this study are listed below:</p><p> * Grid: minimum resolution 0.5 m adjacent to the ground.</p><p> * Grid resolution enhanced near the source and fine enough to provide a
39、pproximately 10 cells across the plume width and height.</p><p> * Reynolds stress turbulence model.</p><p> * Velocity and turbulence profiles specified at the inlets.</p><p> *
40、 Highest order discretisation throughout.</p><p> * LP tracking model, with post-processing of the particle positions to give concentration fields. </p><p> TKE levels around groups of buildin
41、gs are generally higher than found in the undisturbed atmospheric boundary layer, and are likely to dominate the dispersion of releases from stacks and vents in such areas (Robins and Castro, 1977). CFD may simulate thes
42、e built up situations more accurately than the simple boundary layer with a single stack (e.g. Hall, 1997; Hanna et al., 2002). However, this will require future studies using measurements of flow, turbulence and dispers
43、ion around single buildin</p><p><b> 翻譯</b></p><p> CFD有潛力成為在工業(yè)區(qū)等許多建筑極為貼近的情況下模擬風(fēng)流動(dòng)和煙羽擴(kuò)散的重要工具。為了在這樣的模擬中結(jié)果更加可靠,需要對(duì)每個(gè)位置建模或者進(jìn)行一系列的進(jìn)一步研究來驗(yàn)證。本研究主要探索一個(gè)特定CFD軟件(FLUENT)的模擬大氣邊界層流動(dòng)和中性穩(wěn)態(tài)和平坦地形下
44、孤立堆棧的煙羽擴(kuò)散。FLUENT模擬與ADMS的中性大氣情況計(jì)算結(jié)果相比較。這些情況ADMS模型的模擬已經(jīng)由場資料得到大量驗(yàn)證,并且表現(xiàn)非常良好。</p><p> 當(dāng)FLUENT被設(shè)定來模擬中性穩(wěn)態(tài)情況下的大氣邊界層,平均速度剖面就被很好地預(yù)測和并且在下風(fēng)距離處能夠很好地維持。代數(shù)雷諾應(yīng)力湍流模型(RSM)可以通過不同的運(yùn)輸方程計(jì)算單獨(dú)的雷諾應(yīng)力,能夠提供最好的TKE和耗散預(yù)測,然而κ-ε湍流模型預(yù)測TKE值
45、則比預(yù)測要少5個(gè)因子。RSM湍流模型的預(yù)測表明耗散率能夠在模型域的長度內(nèi)維持,并且TKE水平能夠在100m的高度上保持在預(yù)期值的80%以內(nèi),但是在地表水平TKE減少到50%的入口值。</p><p> 羽煙從孤立堆棧傳播能夠通過FLUENT使用三種不同的方式進(jìn)行預(yù)測。</p><p> 對(duì)于AD方法,水平側(cè)風(fēng)煙羽傳播的預(yù)測明顯比ADMS高,導(dǎo)致比預(yù)期更高的水平面濃度。這種結(jié)果是因?yàn)锳D
46、模式中湍流擴(kuò)散等式的各項(xiàng)同向性設(shè)置,盡管RSM湍流模型預(yù)測各雷偌應(yīng)力是不同的同等方向性。</p><p> LP方法基于使用單個(gè)下網(wǎng)格湍流起伏來自于RSM模型的顆粒物的隨機(jī)軌跡,因此給出了一個(gè)非同向性方程。FLUENT LP代碼不能預(yù)測濃度,但是顆粒物軌跡能夠保存為文件,接著后處理能夠給出濃度值。這個(gè)方法能夠得到預(yù)測煙羽擴(kuò)散的最佳結(jié)果;水平和垂直煙羽傳播與ADMS結(jié)果相似,地表濃度和煙羽中心線濃度與ADMS值相
47、接近。然而,當(dāng)?shù)乇頋舛瓤爝f上升時(shí),與ADMS相比會(huì)有一些區(qū)別,但是當(dāng)煙羽中心線濃度下降比ADMS更快時(shí),會(huì)達(dá)到相似的峰值。</p><p> LES的結(jié)果介于AD與LP的預(yù)測之間,水平和垂直煙羽傳播比預(yù)期的較低。LES方法隨時(shí)間變化,因此考慮到CPU的需求成本會(huì)更高。</p><p> 總之,使用LP方法的CFD模擬是令人滿意的。然而,請注意CFD模型并沒有考慮風(fēng)向的曲折,因此與ADM
48、S進(jìn)行平均3min的短期對(duì)比,然而典型的氣象擴(kuò)散運(yùn)算大約會(huì)花費(fèi)1h的時(shí)間。這個(gè)CFD模型不能被認(rèn)為是ADMS等一般大氣擴(kuò)散研究,因?yàn)樗\(yùn)算時(shí)間長并且模型設(shè)定復(fù)雜。CFD更合適于復(fù)雜幾何外形情況等不能用ADMS時(shí)的流動(dòng)運(yùn)算;然而,更進(jìn)一步的研究需要來評(píng)估這種情況的計(jì)算準(zhǔn)確性。</p><p> FLUENT的對(duì)于空氣擴(kuò)散的設(shè)置需要考慮網(wǎng)格分辨率、表面粗糙度、進(jìn)口條件、離散方式和合適的湍流以及擴(kuò)散模型選擇。由本研究
49、所推薦的設(shè)定情況如下所示:</p><p> * 網(wǎng)格:最小分辨率為0.5m鄰近地面。</p><p> * 網(wǎng)格分辨率能夠增強(qiáng)鄰近的污染源,并且細(xì)小到足以提供大約煙羽寬度和高度的10個(gè)網(wǎng)格</p><p> * 雷諾應(yīng)力湍流模型</p><p> * 速度和湍流描述指定的入口</p><p> * 從始至終
50、使用最高階的離散化</p><p> * LP軌跡模型,帶著顆粒物位置的后處理模型能夠給出濃度場</p><p> 繞建筑流的TKE水平比未擾動(dòng)大氣邊界層更高,并且更易于決定堆棧和通風(fēng)口的釋放擴(kuò)散。CFD可能模擬這些累計(jì)情況比普通的單堆棧更加準(zhǔn)確。然而,這需要更進(jìn)一步的測量單個(gè)建筑和建筑群相比于CFD模擬的風(fēng)速、湍流和擴(kuò)散情況。需要更進(jìn)一步地研究穩(wěn)態(tài)和非穩(wěn)態(tài)邊界層。</p>
51、<p> Relationships between indoor and outdoor air quality during the summer season in KOREA</p><p> HAK SUNG LEE. Relationships between indoor and outdoor air quality during the summer season in KOR
52、EA,Atmospheric Environment[J]. 1997,31(11):1689—1693</p><p><b> Abstract</b></p><p> The annular denuder system (ADS) was used to determine quantitatively the relationship between
53、indoor and outdoor air. All indoor and outdoor measurements were done simultaneously using the ADS in Chongju, Korea during the summer season. The data set was collected on eight different days with a 24h sampling period
54、 from 27 July 1995 to 27 August 1995. The chemical species measured were HNO3, HNO2, SO2 and NH3, in the gas phase and PM2.5, SO4, NO3 and NH4 in the particulate phase. For these data, </p><p><b> 翻譯&
55、lt;/b></p><p> 本研究使用環(huán)形分解系統(tǒng)來量化室內(nèi)和室外空氣的關(guān)系。所有的室內(nèi)和室外測量均是在夏季韓國Chongju于同一時(shí)間測量的。測量時(shí)間為1995年6月27至1995年8月27日中的8個(gè)24小時(shí)全天測量。測量的化學(xué)物種為氣態(tài)污染物HNO3, HNO2, SO2 和 NH3,以及顆粒物PM2.5, SO4, NO3和NH4。通過這些數(shù)據(jù)得知,韓國夏季室外空氣對(duì)室內(nèi)環(huán)境污染的貢獻(xiàn)率大約為5
56、0%~100%之間。室內(nèi)空氣中HNO3, SO2, PM2.5, SO4和NH4的濃度明顯與室外濃度相關(guān)。這是ADS測量數(shù)據(jù)在韓國第一次發(fā)表。</p><p> CONCLUSIONS </p><p> The purpose of this study was to determine quantitatively the relationship between indoor a
57、nd outdoor air. The relationship between indoor and outdoor air is dependent, to a large extent, on the rate of exchange between these two environments. The conclusions from this study are based on a limited number of sa
58、mples. To describe better the outdoor indoor air quality relationship, it will be necessary to do more sampling. From our limited data, outdoor air quality was of major significant influenc</p><p><b>
59、 翻譯</b></p><p> 本研究的目的是量化確定室內(nèi)空氣和室外空氣的關(guān)系。室外空氣和室內(nèi)空氣是相關(guān)的,并且在很大程度上是由兩個(gè)環(huán)境的交換率所決定的。本研究的結(jié)論建立在有限的樣本個(gè)數(shù)上。需要更多的樣本來更好地描述室內(nèi)空氣和室外空氣的關(guān)系。從我們有限的數(shù)據(jù)中,韓國夏季的室外空氣質(zhì)量是室內(nèi)空氣環(huán)境的主要影響因素。HNO3, SO2, PM2.5, SO4 和NH4的室內(nèi)空氣濃度與室外空氣濃度明顯相
60、關(guān)。</p><p> An inventory of primary air pollutants and CO2emissions from cement</p><p> production in China, 1990-2020</p><p> Lei Y, Zhang Q, Nielsen C, et al. An inventory of pr
61、imary air pollutants and CO 2 emissions from cement production in China, 1990–2020[J]. Atmospheric Environment, 2011, 45(1): 147-154.</p><p><b> ABSTRACT</b></p><p> Direct emissio
62、ns of air pollutants from the cement industry in China were estimated by developing a technology-based methodology using information on the proportion of cement produced from different types of kilns and the emission sta
63、ndards for the Chinese cement industry. Historical emissions of sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), particulate matter (PM) and carbon dioxide (CO2) were estimated for the years 1990e2008,
64、and future emissions were projected up to 2020</p><p><b> 翻譯</b></p><p> 本文基于水泥不同工藝類型所占比例和中國水泥工業(yè)排放標(biāo)準(zhǔn)的情況,使用了一種基于技術(shù)的方法學(xué)來評(píng)估中國水泥工業(yè)的氣態(tài)污染物直接排放。本文評(píng)估了SO2、NOX、CO、PM和CO2在1990年至2008年的歷史排放數(shù)據(jù),基
65、于當(dāng)下的能源和污染物排放控制措施預(yù)測未來的排放到2020年。與之前的高排放值比較(1997年4.36Tg的PM2.5,7.16TG的PM10和10.44Tg的TSP)。預(yù)測中,2020年盡管水泥產(chǎn)量會(huì)達(dá)到目前的三倍,但PM的排放值顯著下降。其他明確的氣態(tài)污染物比如CO和SO2在預(yù)測中也會(huì)伴隨著立窯的關(guān)停而減小。然而NOx排放會(huì)因?yàn)轭A(yù)分解窯的比例提升以及水泥產(chǎn)量的提高而增大。水泥工業(yè)的CO2排放占中國工業(yè)的大約1/8,。我們的分析表示,如
66、果優(yōu)化的能源相關(guān)技術(shù)得到實(shí)施,則工業(yè)的CO2排放可能達(dá)到大約12.8%。這些技術(shù)也將帶來其他污染物的減排效果。</p><p> Conclusions</p><p> The cement industry plays an important role in emissions of many air pollutants in China. This study estimat
67、es the direct emissions of major air pollutants from cement production based on information on the development of production technologies and rising emission standards in China’s cement industry. Our analysis shows that
68、with the replacement of old shaft kilns by precalciner kilns, there is an opportunity to reduce PM emissions through the implementation of stricter emission standards and t</p><p> Although energy-use effic
69、iency in China’s cement industry has improved significantly in recent years, the industry still contributes approximately one eighth of the nation’sCO2 emissions. Our analysis indicates that it may be possible to reduce
70、CO2emissions by 12.8% by 2020 if advanced energy-related technologies are implemented, and that the substitution of clinker with other material is likely to be the most effective technology in this regard. These energy-r
71、elated technologies are likely to b</p><p><b> 翻譯</b></p><p> 水泥工業(yè)占據(jù)中國氣態(tài)污染物排放的重要地位。本研究基于生產(chǎn)工藝的發(fā)展和中國水泥工業(yè)排放標(biāo)準(zhǔn)的提高評(píng)估了水泥工業(yè)的主要污染物排放。我們的分析表明隨立窯被預(yù)分解窯所代替,通過實(shí)施更嚴(yán)格的排放標(biāo)準(zhǔn)和擴(kuò)大高性能顆粒物控制技術(shù)會(huì)大量減小PM排放。其
72、他的污染物比如CO和SO2也將隨著立窯的更新逐步減小。然而,預(yù)分解窯的比例擴(kuò)大以及中國水泥的產(chǎn)量上升會(huì)導(dǎo)致NOx排放的大量增加。未來的NOX排放可能要通過SCR和SNCR技術(shù)來減小,盡管這些技術(shù)的成本較高</p><p> 盡管中國水泥工業(yè)的能源使用效率在近年來已經(jīng)顯著提升,水泥仍然占國家CO2排放的1/8.我們的分析表明通過實(shí)施更優(yōu)化的能源技術(shù),能夠在2020年將CO2排放降低至12.8%。在這些技術(shù)中,熟料
73、的替換可能是最有效的技術(shù)。這些能源相關(guān)技術(shù)可能帶來減少其他氣態(tài)污染物排放等額外效益。</p><p> Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China</p><p> Zheng J, Shao M, C
74、he W, et al. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China[J]. Environmental science & technology, 2009, 43(22): 8580-8586.</p><p><
75、;b> ABSTRACT</b></p><p> The Pearl River Delta region (PRD) of China has long suffered from severe ground-level ozone pollution. Knowledge of the sources of volatile organic compounds (VOCs) is es
76、sential for ozone chemistry. In this work, a speciated VOC emission inventory was established on the basis of updated emissions and local VOC source profiles. The top 10 species, in terms of ozone formation potentials (O
77、FPs), consisted of isoprene, mp-xylene, toluene, ethylene, propene, o-xylene, 1,2,4-trimethyl-benzene, 2-meth</p><p><b> 翻譯</b></p><p> 中國珠三角(PRD)長期受到地表臭氧污染的危害。臭氧的關(guān)鍵來源是VOCs。在本研究中,一
78、個(gè)物種化的VOC排放清單建立在更新的排放和當(dāng)?shù)豓OC源描述的基礎(chǔ)上。影響臭氧形成潛勢最多的10個(gè)物種是異戊二烯、間二甲苯、甲苯、乙烯、丙烯、鄰二甲苯、1,2,4三甲苯,2-甲基-2-丁烯,1-丁烯和R-蒎烯。這些物種只占大約35.9%的VOCs排放比例,但是卻占區(qū)域OFP的64.1%。VOC排放源的空間模型與基于城市的排放源比例結(jié)果吻合度高,尤其是車輛排放和工業(yè)附加產(chǎn)品相關(guān)的voc排放。繪制OFPs的地圖并且測量臭氧濃度支出在南方和珠三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
評(píng)論
0/150
提交評(píng)論