版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 大學</b></p><p> 本科生畢業(yè)設計(論文)</p><p><b> 外文翻譯</b></p><p><b> 學 院: </b></p><p> 專 業(yè): </p><p>
2、 學 生: </p><p> 指導教師: </p><p> 完成日期: 2012年5月 30日 </p><p> Integrated circuit (IC) </p><p> Introducion</p><p> Integrated circuit
3、 also called microelectronic circuit or chip an assembly of electronic components, fabricated as a single unit, in which miniaturized active devices (e.g., transistors and diodes) and passive devices (e.g., capacitor
4、s and resistors) and their interconnections are built up on a thin substrate of semiconductor material (typically silicon). The resulting circuit is thus a small monolithic “chip,” which may be as small as a few square c
5、entimetres or only a few square millimetre</p><p> Integrated circuits have their origin in the invention of the transistor in 1947 by William B. Shockley and his team at the American Telephone and Telegrap
6、h Company's Bell Laboratories. Shockley's team (including John Bardeen and Walter H. Brattain) found that, under the right circumstances, electrons would form a barrier at the surface of certain crystals, and the
7、y learned to control the flow of electricity through the crystal by manipulating this barrier. Controlling electron flow through a cr</p><p> Using the same principles and materials, engineers soon learned
8、to create other electrical components, such as resistors and capacitors. Now that electrical devices could be made so small, the largest part of a circuit was the awkward wiring between the devices. </p><p>
9、 In 1958 Jack Kilby of Texas Instruments, Inc., and Robert Noyce of Fairchild Semiconductor Corporation independently thought of a way to reduce circuit size further. They laid very thin paths of metal (usually aluminum
10、 or copper) directly on the same piece of material as their devices. These small paths acted as wires. With this technique an entire circuit could be “integrated” on a single piece of solid material and an integrated cir
11、cuit (IC) thus created. ICs can contain hundreds of thousands </p><p> Basic IC types </p><p> Analog versus digital circuits</p><p> Analog, or linear, circuits typically use on
12、ly a few components and are thus some of the simplest types of ICs. Generally, analog circuits are connected to devices that collect signals from the environment or send signals back to the environment. For example, a mi
13、crophone converts fluctuating vocal sounds into an electrical signal of varying voltage. An analog circuit then modifies the signal in some useful way—such as amplifying it or filtering it of undesirable noise. Such a si
14、gnal might then </p><p> Another typical use for an analog circuit is to control some device in response to continual changes in the environment. For example, a temperature sensor sends a varying signal to
15、a thermostat, which can be programmed to turn an air conditioner, heater, or oven on and off once the signal has reached a certain value.</p><p> A digital circuit, on the other hand, is designed to accept
16、only voltages of specific given values. A circuit that uses only two states is known as a binary circuit. Circuit design with binary quantities, “on” and “off” representing 1 and 0 (i.e., true and false), uses the logic
17、of Boolean algebra. The three basic logic functions—NOT, AND, and OR—together with their truth tables are given in the figure. (Arithmetic is also performed in the binary number system employing Boolean algebra.) These b
18、</p><p> Microprocessor circuits</p><p> Microprocessors are the most complicated ICs. They are composed of millions of transistors that have been configured as thousands of individual digital
19、 circuits, each of which performs some specific logic function. A microprocessor is built entirely of these logic circuits synchronized to each other. </p><p> Just like a marching band, the circuits perfor
20、m their logic function only on direction by the bandmaster. The bandmaster in a microprocessor, so to speak, is called the clock. The clock is a signal that quickly alternates between two logic states. Every time the clo
21、ck changes state, every logic circuit in the microprocessor does something. Calculations can be made very quickly, depending on the speed (“clock frequency”) of the microprocessor. </p><p> Microprocessors
22、contain some circuits, known as registers, that store information. Registers are predetermined memory locations. Each processor has many different types of registers. Permanent registers are used to store the preprogramm
23、ed instructions required for various operations (such as addition and multiplication). Temporary registers store numbers that are to be operated on and also the result. Other examples of registers include the “program co
24、unter,” the “stack pointer,” and the “addres</p><p> Microprocessors can perform millions of operations per second on data. In addition to computers, microprocessors are common in video game systems, televi
25、sions, cameras, and automobiles.</p><p> Memory circuits </p><p> Microprocessors typically have to store more data than can be held in a few registers. This additional information is relocate
26、d to special memory circuits. Memory is composed of dense arrays of parallel circuits that use their voltage states to store information. Memory also stores the temporary sequence of instructions, or program, for the mic
27、roprocessor. Manufacturers continually strive to reduce the size of memory circuits—to increase capability without increasing space. In addition, smaller </p><p> Digital signal processors </p><p
28、> A signal is an analog waveform—anything in the environment that can be captured electronically. A digital signal is an analog waveform that has been converted into a series of binary numbers for quick manipulation.
29、 As the name implies, a digital signal processor (DSP) processes signals digitally, as patterns of 1s and 0s. For instance, using an analog-to-digital converter, commonly called an A-to-D or A/D converter, a recording of
30、 someone's voice can be converted into digital 1s and 0s. The digi</p><p> Application-specific ICs</p><p> An application-specific IC (ASIC) can be either a digital or an analog circuit.
31、As their name implies, ASICs are not reconfigurable; they perform only one specific function. For example, a speed controller IC for a remote control car is hard-wired to do one job and could never become a microprocesso
32、r. An ASIC does not contain any ability to follow alternate instructions.</p><p> Radio-frequency ICs </p><p> Radio-frequency ICs (RFICs) are rapidly gaining importance in cellular telephones
33、 and pagers. RFICs are analog circuits that usually run in the frequency range of 900 MHz to 2.4 GHz (900 million hertz to 2.4 billion hertz). They are usually thought of as ASICs even though some may be configurable for
34、 several similar applications. Most semiconductor circuits that operate above 500 MHz cause the electronic components and their connecting paths to interfere with each other in unusual ways. Engineer</p><p>
35、 Microwave monolithic ICs </p><p> A special type of RFIC is known as a microwave monolithic IC (MMIC). These circuits run in the 2.4- to 20-GHz range, or microwave frequencies, and are used in radar syste
36、ms, in satellite communications, and as power amplifiers for cellular telephones. </p><p> Just as sound travels faster through water than through air, electron velocity is different through each type of se
37、miconductor material. Silicon offers too much resistance for microwave-frequency circuits, and so the compound gallium arsenide (GaAs) is often used for MMICs. Unfortunately, GaAs is mechanically much less sound than sil
38、icon. It breaks easily, so GaAs wafers are usually much more expensive to build than silicon wafers.</p><p> Basic semiconductor design </p><p> Any material can be classified as one of three
39、types: conductor, insulator, or semiconductor. A conductor (such as copper or salt water) can easily conduct electricity because it has an abundance of free electrons. An insulator (such as ceramic or dry air) conducts e
40、lectricity very poorly because it has few or no free electrons. A semiconductor (such as silicon or gallium arsenide) is somewhere between a conductor and an insulator. It is capable of conducting some electricity, but n
41、ot much.</p><p> Basic semiconductor design</p><p> Doping silicon</p><p> Most ICs are made of silicon, which is abundant in ordinary beach sand. Pure crystalline silicon, as wi
42、th other semiconducting materials, has a very high resistance to electrical current at normal room temperature. However, with the addition of certain impurities, known as dopants, the silicon can be made to conduct usabl
43、e currents. In particular, the doped silicon can be used as a switch, turning current off and on as desired.</p><p> The process of introducing impurities is known as doping or implantation. Depending on a
44、dopant's atomic structure, the result of implantation will be either an n-type (negative) or a p-type (positive) semiconductor. An n-type semiconductor results from implanting dopant atoms that have more electrons in
45、 their outer (bonding) shell than silicon, as shown in the figure. The resulting semiconductor crystal contains excess, or free, electrons that are available for conducting current. A p-type semi</p><p> Ba
46、sic semiconductor design </p><p> The p-n junction </p><p> A p-type or an n-type semiconductor is not very useful on its own. However, joining these opposite materials creates what is called
47、 a p-n junction. A p-n junction forms a barrier to conduction between the materials. Although the electrons in the n-type material are attracted to the holes in the p-type material, the electrons are not normally energet
48、ic enough to overcome the intervening barrier. However, if additional energy is provided to the electrons in the n-type material, they will be capabl</p><p> A p-n junction that conducts electricity when en
49、ergy is added to the n material is called forward-biased because the electrons move forward into the holes. If voltage is applied in the opposite direction—a positive voltage connected to the n side of the junction—no cu
50、rrent will flow. The electrons in the n material will still be attracted to the positive voltage, but the voltage will now be on the same side of the barrier as the electrons. In this state a junction is said to be rever
51、se-biased. S</p><p> Basic semiconductor design </p><p> Field-effect transistors </p><p> Bringing a negative voltage close to the centre of a long strip of n-type material will
52、 repel nearby electrons in the material and thus form holes—that is, transform some of the strip in the middle to p-type material. This change in polarity utilizing an electric field gives the field-effect transistor its
53、 name. (See animation.) While the voltage is being applied, there will exist two p-n junctions along the strip, from n to p and then from p back to n. One of the two junctions will always be re</p><p> The
54、location where the voltage is applied is known as a gate. The gate is separated from the transistor strip by a thin layer of insulation to prevent it from short-circuiting the flow of electrons through the semiconductor
55、from an input (source) electrode to an output (drain) electrode. Similarly, a switch can be made by placing a positive gate voltage near a strip of p-type material. A positive voltage attracts electrons and thus forms a
56、region of n within a strip of p. This again creates two </p><p> Basic semiconductor design </p><p> Enhancement mode FETs </p><p> There are two basic types of field-effect tra
57、nsistors. The type described previously is a depletion mode FET, since a region is depleted of its natural charge. The field effect can also be used to create what is called an enhancement mode FET by enhancing a region
58、to appear similar to its surrounding regions.</p><p> An n-type enhancement mode FET is made from two regions of n-type material separated by a small region of p. As this FET naturally contains two p-n junc
59、tions—two diodes—it is normally switched off. However, when a positive voltage is placed on the gate, the voltage attracts electrons and creates n-type material in the middle region, filling the gap that was previously p
60、-type material, as shown in the animation. The gate voltage thus creates a continuous region of n across the entire strip, allow</p><p> Basic semiconductor design</p><p> Complementary metal-
61、oxide semiconductors</p><p> Recall that placing a positive voltage at the gate of an n-type enhanced mode FET will turn the switch on. Placing the same voltage at the gate of a p-type enhanced mode FET wil
62、l turn the switch off. Likewise, placing a negative voltage at the gate will turn the n-type off and the p-type on. These FETs always respond in opposite, or complementary, fashion to a given gate voltage. Thus, if the g
63、ates of an n-type and a p-type FET are connected, any voltage applied to the common gate will operate t</p><p> Basic semiconductor design </p><p> Bipolar transistors </p><p>
64、Bipolar transistors simultaneously use holes and electrons to conduct, hence their name (from “two polarities”). Like FETs, bipolar transistors contain p- and n-type materials configured in input, middle, and output regi
65、ons. In bipolar transistors, however, these regions are referred to as the emitter, the base, and the collector. Instead of relying, as FETs do, on a secondary voltage source to change the polarity beneath the gate (the
66、field effect), bipolar transistors use a secondary voltage s</p><p> Designing ICs </p><p> All ICs use the same basic principles of voltage (V), current (I), and resistance (R). In particular
67、, equations based on Ohm's law, V = IR, determine many circuit design choices. Design engineers must also be familiar with the properties of various electronic components needed for different applications.</p>
68、<p> Designing ICs </p><p> Analog design </p><p> As mentioned earlier, an analog circuit takes an infinitely variable real-world voltage or current and modifies it in some useful way
69、. The signal might be amplified, compared with another signal, mixed with other signals, separated from other signals, examined for value, or otherwise manipulated. For the design of this type of circuit, the choice of e
70、very individual component, size, placement, and connection is crucial. Unique decisions abound—for instance, whether one connection should be sligh</p><p> Designing ICs </p><p> Digital desi
71、gn </p><p> Since digital circuits involve millions of times as many components as analog circuits, much of the design work is done by copying and reusing the same circuit functions, especially by using dig
72、ital design software that contains libraries of prestructured circuit components. The components available in such a library are of similar height, contain contact points in predefined locations, and have other rigid con
73、formities so that they fit together regardless of how the computer configures a layout</p><p> Whether analog or digital circuitry is used depends on the function of a circuit. The design and layout of anal
74、og circuits are more demanding of teamwork, time, innovation, and experience, particularly as circuit frequencies get higher, though skilled digital designers and layout engineers can be of great benefit in overseeing an
75、 automated process as well. Digital design emphasizes different skills from analog design. </p><p><b> 集成電路(IC)</b></p><p><b> 引言 </b></p><p> 集成電路也稱為微
76、電子電路或芯片的電子元件,作為一個單元,其中微型有源器件(如晶體管和二極管)和無源器件(例如,電容器和電阻器)和他們的互連是建立在制造薄基板的半導體材料(通常是硅)。從而產生電路是一個小鐵板和一塊“芯片”,這可能只有幾平方厘米的小或只有幾平方毫米,這就是一般大小的微觀個人的電路元件。 </p><p> 集成電路是他們在1947年由William B. Shockley和他的團隊在美國電話電報公司的貝爾實
77、驗室發(fā)明的晶體管。肖克利的團隊(包括John Bardeen和Walter H.的布拉坦的)發(fā)現,在正常情況下,電子會在某些晶體表面形成的障礙,他們學會了控制流動的電力通過晶體??刂凭w的電子流通過允許團隊創(chuàng)建一個設備,可以進行一定的電氣操作,如信號放大,真空管,以前他們命名這種設備為晶體管,由一個組合的傳輸和電阻組成設備(見照片)。創(chuàng)造電子設備,使用固體材料的方法的研究成品被稱為固態(tài)電子。固態(tài)裝置被證明比其他裝置更堅固,更容易使用,更
78、可靠,更小,但是它比真空管昂貴。 </p><p> 使用相同的原則和材料,工程師很快就學會了創(chuàng)建其他的電器元件,如電阻和電容,但電路的最大挑戰(zhàn)是設備之間的接線。 1958年,由于杰克·基爾比,德州儀器公司和半導體公司的羅伯特·諾伊斯創(chuàng)立了獨立思想的方法,從而進一步減少電路的尺寸。這個方法奠定了金屬的路徑(通常為鋁或銅),那就是直接用一塊材料作為其設備,
79、以這些小的路徑作為電線。使整個電路可以以堅實的物質單件“一體化”的技術和集成電路(IC)為創(chuàng)造基礎。芯片可以包含成千上萬如豌豆大小的單個晶體管的材料單件。本來,許多真空管是昂貴的,可是集成電路的發(fā)明使信息時代的技術變得可行。集成電路現在廣泛應用在各行各業(yè),從汽車到游樂園的游樂設施再到家庭用的烤面包機等等。</p><p> 基本IC類型 </p><p> 模擬與數字電路
80、</p><p> 模擬,或線性電路通常只使用幾個組件,這就是一些IC的簡單類型。一般來說,模擬電路連接到設備時,都會從環(huán)境中收集信號或發(fā)出信號。例如,一個麥克風轉換成電信號的不同電壓波動的聲音。模擬電路就會修改一些有用的方式,如放大或過濾不良噪音的信號。這樣一個信號,可能會被反饋到揚聲器,然后將重現最初拿起麥克風的音。 </p><p> 模擬電路的另一個典型的用途是在回應不斷
81、變化的環(huán)境,然后控制某些設備。例如,一個溫度傳感器發(fā)送到一個恒溫變化的信號,它可以編程來打開和關閉空調,熱水器,或烤箱一旦收到信號就會體現其功能。 </p><p> 數字電路,旨在接受只有特定的定值電壓被稱為二進制電路的電路。使用時只有兩種狀態(tài),電路設計與二進制數量,“開”和“關”代表1和0(即true和false),用的事代數的邏輯。圖中給出的三個基本邏輯功能,不、與、或,連同其真值表。(算術也采用二
82、進制數布爾代數系統(tǒng)中執(zhí)行。)這些基本元素相結合,在集成電路設計中為數碼電腦和相關設備,以執(zhí)行所需的功能。</p><p> 微處理器電路 </p><p> 微處理器是最復雜的集成電路。它們是由數百萬個晶體管,成千上萬的個人數字電路組成,其中每個執(zhí)行一些特定的邏輯功能配置。微處理器完全是建立在這些邏輯電路相互同步的基礎上的。就像一個軍樂隊,電路執(zhí)行方向由樂隊指揮他們的邏輯功能。,
83、可以這么說,在微處理器的樂隊指揮被稱為時鐘。時鐘是一個信號,兩個邏輯狀態(tài)之間迅速交替。每次時鐘狀態(tài)發(fā)生變化,每一個邏輯電路,微處理器做一些事情。根據微處理器的速度(“時鐘頻率”),可以計算得非???。微處理器中包含一些電路,被稱為寄存器,用來存儲信息,即寄存器預定的內存位置。每個處理器都有許多不同類型的寄存器。常駐寄存器用來存儲預先設定的指令所需的各種操作(如加法和乘法)。臨時寄存器存儲的數字將被作為操作結果。寄存器的其他例子包括“程序計
84、數器”,“堆棧指針”和“地址”注冊。 </p><p> 微處理器可以執(zhí)行每秒的數據高達百萬。除了電腦,微處理器是常見的視頻游戲系統(tǒng)。</p><p><b> 存儲器電路 </b></p><p> 微處理器通??梢源鎯芏嗟臄祿?。這些額外的信息遷移到特殊的記憶體電路中。內存組成的并聯(lián)電路使用的電壓狀態(tài)來存儲信息的密集陣列。
85、記憶存儲指令或程序的臨時序列,稱作微處理器。制造商不斷努力,以減少的內存大小的電路,從而增加空間的能力。此外,較小的組件通常使用更少的功率,更有效地運作,并可以減少生產成本。數字信號處理器 </p><p> 一個信號就是模擬波形在任何一個電子環(huán)境可以被捕捉的信號。數字信號是模擬波形,已轉換成一系列二進制數字。顧名思義,數字信號處理器(DSP)處理信號的數字,1s和0s模式。例如,使用一個模擬 - 數字轉
86、換器,俗稱A至D或A / D轉換器,一個人的聲音的錄音可以轉換成數字1和0。通過使用復雜的數學公式DSP的數字代表的聲音,然后可以修改。例如,電路中的DSP算法,可配置承認所說的話作為背景噪聲和數字消除環(huán)境噪聲的波形之間的差距。最后,處理后的信號可以轉換回(由D / A轉換)到模擬信號的聽覺。數字信號處理可以過濾背景噪音很快,舉例來說,這樣的處理使“現場”電視節(jié)目的廣播把重點放在1個四分衛(wèi)的信號。DSP還用于生產數字電視直播的影響。例如
87、,在足球比賽中顯示黃色標記線是不是真領域的DSP增加了線后相機拍攝的圖片。同樣,就如體育場圍欄和電視體育賽事期間的廣告牌上看到一些廣告是不是真的。</p><p> 應用專用集成電路 </p><p> 一個特定應用集成電路(ASIC),可以是一個數字或模擬電路。顧名思義, ASIC是不是重構;他們只執(zhí)行一個特定的功能。例如,一個遠程控制汽車的速度控制器IC是硬接線做的一個工作,
88、不可能成為一個微處理器。ASIC中不包含任何能夠遵循替代的指示。</p><p> 射頻集成電路 </p><p> 射頻集成電路(RFIC的)正在迅速移動電話和傳呼機的重要性。RFIC的是,通常在900兆赫的頻率范圍內運行至2.4千兆赫(900百萬赫茲到2.4億赫茲)的模擬電路。他們通常認為,即使作為ASIC的一些可配置幾個類似的應用。大多數半導體電路500兆赫以上操作造成的電
89、子元件和連接路徑,在不尋常的方式互相干擾。工程師必須使用特殊的設計技術與高頻微電子相互作用的物理處理。微波單片集成電路 </p><p> 一個特殊類型的射頻微波單片集成電路(MMIC),被稱為。這些電路運行在2.4到20 GHz范圍內,或微波頻率,并在雷達系統(tǒng),衛(wèi)星通信,使用,以及用于蜂窩電話功率放大器。 </p><p> 一樣的聲音通過水傳播的速度比通過空氣通過每種類
90、型的半導體材料,電子的傳播速度是不同的。硅微波高頻電路提供了太多的阻力,所以常常使用MMIC的化合物砷化鎵(GaAs)。不幸的是,砷化鎵比硅機械少得多。它容易打破,所以砷化鎵晶圓通常比硅片建立更加昂貴。</p><p><b> 基本的半導體設計</b></p><p> 任何材料可分為三種類型之一:導體,絕緣體或半導體。導體(如銅或咸水),可以很容易地進行發(fā)電,
91、因為它有大量的自由電子。絕緣體(如陶瓷或干燥的空氣)的導電性很差,因為它有很少或根本沒有自由電子。半導體(如硅或砷化鎵),是介于導體和絕緣體。它是能夠發(fā)出一些電力,但數量不多。基本的半導體設計摻雜硅 </p><p> 大多數集成電路芯片,如純凈的晶體硅,與其他半導體材料都可以摻雜。然而,與某些雜質,摻雜已知此外,硅可以進行電流測試。,尤其是摻雜硅可以用來作為一個開關,轉向當前打開和關閉的需要,引入雜質的
92、過程被稱為摻雜或注入。</p><p> 根據摻雜劑的原子結構,植入的結果將是一個n型(負)或p型(正)半導體。從植入有更多的電子在其外層(粘接)外殼比硅的摻雜原子的n型半導體的結果,圖中所示。半導體晶體含有多余的,或自由電子傳導電流。從植入,在其外殼比硅少的電子摻雜原子的p型半導體。由此產生的晶體包含在其粘接結構通常位于電子的“洞”。在本質上,這些孔可以進行正電荷的晶體移動。</p><p
93、> 基本的半導體設計p-n結 </p><p> p型或n型半導體參加這些相反的材料創(chuàng)建被稱為pn結。一個PN結形成的材料之間的傳導障礙。雖然在n型材料中的電子被吸引在p型材料的孔,電子不正常能量足以克服干預屏障。然而,如果在n型材料的電子提供額外的能量,他們將能夠穿越屏障進入p型材料和電流會流入。這種額外的能量,可提供的p型材料施加一個正電壓,如下圖所示。電子帶負電荷,然后將高度吸引到整個路口的
94、正電壓。 </p><p> 導電時能量被添加到N材料的PN結正向偏置,被稱為電子移動。如果電壓施加相反方向的正電壓連接到N側的交界處將沒有流入。N材料的電子仍然會被吸引到正電壓,但現在同方作為電子屏障的電壓。在這種狀態(tài)下一個路口說是反向偏置。由于pn結只在一個方向進行發(fā)電,他們是一個類型的二極管。二極管是半導體開關的重要基石?;镜陌雽w設計場效應晶體管 </p><p>
95、 帶來的負電壓接近中心的n型材料的長條形,將被排斥在附近的電子材料,從而形式是,一些轉化的中間地帶的p型材料。這利用電場極性變化給場效應晶體管,它的名字。(看動畫)當電壓被應用,將沿條存在兩個pn結,從n到p,然后從p到n。兩路口將永遠是反向偏置。由于不能進行反向偏置結,電流不能流過條??梢杂脕韯?chuàng)建一個開關(晶體管)把當前的關閉,只需申請和消除附近的一個小的電壓,以創(chuàng)建或銷毀材料中的反向偏置二極管,場效應。使用場效應晶體管被稱為場效應
96、晶體管(FET)。被稱為門的位置,施加電壓。門被分離由薄絕緣層,以防止短路輸入(源)電極的電子流通過半導體輸出(漏)電極從晶體管條。同樣,一個開關,可以由p型材料帶附近放置了積極的柵極電壓。一個正電壓吸引電子,從而形成n個區(qū)域內的p帶。這再次創(chuàng)造了兩個P-N結,或二極管。如前所述,一個二極管將永遠是反向偏置,將停止電流。場效應管是構建邏輯電路開關期間,因為他們需要的只是一個很小的電流。目前沒有需要舉行晶體管的開啟或關閉狀態(tài);電壓將保持這
97、種狀態(tài)。這種類型的交換,有助于延長電池壽命。一個場效應晶體管被稱為單極性(從“一極”),因為主要的傳導方法是要么孔或電子,不</p><p><b> 基本的半導體設計</b></p><p> 增強型場效應管 </p><p> 有兩個基本類型的場效應晶體管。前面所述的類型是耗盡型場效應管,因為一個地區(qū)的自然電荷耗盡。場效應也可以
98、用來創(chuàng)建被稱為增強型場效應管,提高一個地區(qū)及其周邊地區(qū)出現類似。 </p><p> N型增強型場效應管是由n型材料由小p的地區(qū)分隔兩個地區(qū)。由于這FET自然包含兩個pn路口 ,它通常被關掉。然而,在門上放置一個正電壓時,電壓吸引電子,并建立在n型材料,填補中部地區(qū)的差距,以前是p型材料,如動畫中所示。柵極電壓,從而造成整個帶n個連續(xù)的區(qū)域,使電流從一方流向其他。這將晶體管。同樣,一個P-型增強型場效
99、應管,可從兩個地區(qū)小區(qū)域的n分隔的p型材料。打開這種晶體管的柵極電壓為負。增強型場效應晶體管切換速度比耗盡型場效應管,因為他們需要根據門的變化只是表面附近的,而不是通過材料的方式。</p><p> 基本的半導體設計 </p><p> 互補金屬氧化物半導體 </p><p> 記得,在n型增強模式FET的柵極正電壓將打開開關。名次相同的電壓,在p
100、型增強模式FET的柵極,將關閉開關。同樣,在門口放置一個負電壓會變成n型的關閉和p型。這些場效應管總是在對面的回應,或一個給定的柵極電壓的互補性,時尚。因此,如果n型和p型FET的閘相連,任何電壓適用于普通門,將經營的互補配對,轉向一個離開的其他關閉。一對n型和p型晶體管,這種方式被稱為互補金屬氧化物半導體(CMOS)半導體。由于互補晶體管對兩個邏輯狀態(tài)之間可以快速切換,CMOSs??是非常有用的邏輯電路。特別,因為只有一個電路是在任何
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論