版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> 中文5370字,3300單詞,17900英文字符</p><p> 出處:Galambos T V. Recent research and design developments in steel and composite steel–concrete structures in USA[J]. Journal of Constructional Steel Research, 200
2、0, 55(s 1–3):289-303.</p><p><b> 外 文 譯 文</b></p><p> 學(xué) 院 建筑工程學(xué)院 </p><p> 專業(yè)班級 土木工程 </p><p> 學(xué)生姓名
3、 </p><p> 學(xué) 號 </p><p> Recent Research and Design Developments in Steel and Composite Steel-concrete Structures in USA</p><p> T
4、he paper will conclude with a look toward the future of structural steel research.</p><p> 1. Research on steel bridges</p><p> The American Association of State Transportation and Highway Off
5、icials (AASTHO) is the authority that promulgates design standards for bridges in the US. In 1994 it has issued a new design specification which is a Limit States Design standard that is based on the principles of reliab
6、ility theory. A great deal of work went into the development of this code in the past decade, especially on calibration and on the probabilistic evaluation of the previous specification. The code is now being impleme<
7、/p><p> America has an aging steel bridge population and many problems arise from fatigue and corrosion. Fatigue studies on full-scale components of the Williamsburg Bridge in New York have recently been compl
8、eted at Lehigh University. A probabilistic AASTHO bridge evaluation regulation has been in effect since 1989, and it is employed to assess the future useful life of structures using rational methods that include field ob
9、servation and measurement together with probabilistic analysis. Such an activit</p><p> In addition to fatigue and corrosion, the major danger to bridges is the possibility of earthquake induced damage. Thi
10、s also has spawned many research projects on the repair and retrofit of steel superstructures and the supporting concrete piers. Many bridges in the country are being strengthened for earthquake resistance. One area th
11、at is receiving much research attention is the strengthening of concrete piers by "jacketing" them by sheets of high-performance reinforced plastic.</p><p> The previously described research deals
12、 mainly with the behavior of existing structures and the design of new bridges. However, there is also a vigorous activity on novel bridge systems. This research is centered on the application of high-performance steels
13、for the design of innovative plate and box-girder bridges, such as corrugated webs, combinations of open and closed shapes, and longer spans for truss bridges. It should be mentioned here that, in addition to work on ste
14、el bridges, there is </p><p> The final subject to be mentioned is the resurgence of studies of composite steel concrete horizontally curved steel girder bridges. A just completed project at the University
15、of Minnesota monitored the stresses and the deflections in a skewed and curved bridge during all phases of construction, starting from the fabrication yard to the completed bridge.~ Excellent correlation was found to ex
16、ist between the measured stresses and deformations and the calculated values. The stresses and deflectio</p><p> From the discussion above it can be seen that even though there is no large expansion of the
17、nation's highway and railroad system, there is extensive work going on in bridge research. The major challenge facing both the researcher and the transportation engineer is the maintenance of a healthy but aging syst
18、em, seeing to its gradual replacement while keeping it safe and serviceable.</p><p> 2. Research on steel members and frames</p><p> There are many research studies on the strength and behavio
19、r of steel building structures. The most important of these have to do with the behavior and design of steel structures under severe seismic events. This topic will be discussed later in this paper. The most significant
20、trends of the non-seismic research are the following:</p><p> "Advanced" methods of structural analysis and design are actively studied at many Universities, notably at Cornell, Purdue, Stanford,
21、and Georgia Tech Universities. Such analysis methods are meant to determine the load-deformation behavior of frames up to and beyond failure, including inelastic behavior, force redistribution, plastic hinge formation, s
22、econd-order effects and frame instability. When these methods are fully operational, the structure will not have to undergo a member check, becaus</p><p> Another aspect of the frame behavior work is the st
23、udy of the frames with semirigid joints. The American Institute of Steel Construction (AISC) has published design methods for office use. Current research is concentrating on the behavior of such structures under seismic
24、 loading. It appears that it is possible to use such frames in some seismic situations, that is, frames under about 8 to 10 stories in height under moderate earthquake loads. The future of structures with semi-rigid fram
25、es looks </p><p> Research on member behavior is concerned with studying the buckling and post buckling behavior of compact angle and wide-flange beam members by advanced commercial finite element programs.
26、 Such research is going back to examine the assumptions made in the 1950s and 1960s when the plastic design compactness and bracing requirements were first formulated on a semi-empirical basis. The non-linear finite ele
27、ment computations permit the "re-testing" of the old experiments and the performing of new c</p><p> 3. Research on cold-formed steel structures</p><p> Next to seismic work, the mos
28、t active part of research in the US is on cold-formed steel structures. The reason for this is that the supporting industry is expanding, especially in the area of individual family dwellings. As the cost of wood goes up
29、, steel framed houses become more and more economical. The intellectual problems of thin-walled structures buckling in multiple modes under very large deformations have attracted some of the best minds in stability resea
30、rch. As a consequence, many new</p><p> 4. Research on steel-concrete composite structures</p><p> Almost all structural steel bridges and buildings in the US are built with composite beams or
31、 girders. In contrast, very few columns are built as composite members. The area of composite Column research is very active presently to fill up the gap of technical information on the behavior of such members. The subj
32、ect of steel tubes filled with high-strength concrete is especially active. One of the aims of research performed by Hajjar at the University of Minnesota is to develop a fundamental unde</p><p> Other majo
33、r research work concerns the behavior and design of built-up composite wide-flange bridge girders under both positive and negative bending. This work is performed by Frank at the University of Texas at Austin and by Whit
34、e of Georgia Tech, and it involves extensive studies of the buckling and post-buckling of thin stiffened webs. Already mentioned is the examination of the shakedown of composite bridges. The question to be answered is wh
35、ether a composite bridge girder loses composite ac</p><p> 5. Research on connections</p><p> Connection research continues to interest researchers because of the great variety of joint types.
36、 The majority of the connection work is currently related to the seismic problems that will be discussed in the next section of this paper. The most interest in non-seismic connections is the characterization of the mono
37、tonic moment-rotation behavior of various types of semi-rigid joints. </p><p> 6. Research on structures and connections subject to seismic forces</p><p> The most compelling driving force for
38、 the present structural steel research effort in the US was the January 17, 1994 earthquake in Northridge, California, North of Los Angeles. The major problem for steel structures was the extensive failure of prequalifie
39、d welded rigid joints by brittle fracture. In over 150 buildings of one to 26 stories high there were over a thousand fractured joints. The buildings did not collapse, nor did they show any external signs of distress, an
40、d there were no human i</p><p> In this connection the flanges of the beams are welded to the flanges of the column by full-penetration butt welds. The webs are bolted to the beams and welded to the columns
41、. The characteristic features of this type of connection are the backing bars at the bottom of the beam flange, and the cope-holes left open to facilitate the field welding of the beam flanges. Fractures occurred in the
42、 welds, in the beam flanges, and/or in the column flanges, sometimes penetrating into the webs.</p><p> Once the problem was discovered several large research projects were initiated at various university l
43、aboratories, such as The University of California at San Diego, the University of Washington in Seattle, the University of Texas at Austin, Lehigh University at Bethlehem, Pennsylvania, and at other places. The US Govern
44、ment under the leadership of the Federal Emergency Management Agency (FEMA) instituted a major national research effort. The needed work was deemed so extensive that no single re</p><p> (1) Structural Engi
45、neering Association of California.</p><p> (2) Applied Technology Council.</p><p> (3) California Universities for Research in Earthquake Engineering.</p><p> The first letters i
46、n the name of each agency were combined to form the acronym SAC, which is the name of the joint venture that manages the research. We shall read much from this agency as the results of the massive amounts of research per
47、formed under its aegis are being published in the next few years. </p><p> The goals of the program are to develop reliable, practical and cost-effective guidelines for the identification and inspection of
48、at-risk steel moment frame buildings, the repair or upgrading of damaged buildings, the design of new construction, and the rehabilitation of undamaged buildings.~ As can be seen, the scope far exceeds the narrow look at
49、 the connections only. The first phase of the research was completed at the end of 1996, and its main aim was to arrive at interim guidelines so that</p><p> ~ A state-of-the-art assessment of knowledge on
50、steel connections.</p><p> ~ A survey of building damage.</p><p> ~ The evaluation of ground motion.</p><p> ~ Detailed building analyses and case studies.</p><p>
51、~ A preliminary experimental program.</p><p> ~ Professional training and quality assurance programs.</p><p> ~ Publishing of the Interim Design Guidelines.</p><p> A number of r
52、eports were issued in this first phase of the work. A partial list of these is appended at the end of this paper.</p><p> During the first phase of the SAC project a series of full-scale connection tests
53、under static and, occasionally, dynamic cyclic tests were performed. Tests were of pre-Northridge-type connections (that is, connections as they existed at the time of the earthquake), of repaired and upgraded details
54、, and of new recommended connection details. A schematic view of the testing program is illustrated in Fig. 2.2.2 Some recommended strategies for new design are schematically shown in Fig</p><p>
55、Fig. 2.2.3 some recommended improvements in the interim guidelines</p><p> The following possible causes, and their combinations, were found to have contributed to tile connection failures:</p><
56、;p> ~ Inadequate workmanship in the field welds.</p><p> ~ Insufficient notch-toughness of the weld metal.</p><p> ~ Stress raisers caused by the backing bars.</p><p> ~ Lack
57、 of complete fusion near the backing bar.</p><p> ~ Weld bead sizes were too big.</p><p> ~ Slag inclusion in the welds.</p><p> While many of the failures can be directly attrib
58、uted to the welding and the material of the joints, there are more serious questions relative to the structural system that had evolved over the years mainly based on economic considerations.' The structural syste
59、m used relatively few rigid-frames of heavy members that were designed to absorb the seismic forces for large parts of the structure. These few lateral-force resistant frames provide insufficient redundancy. More rigid-f
60、rames with smal</p><p> As can be seen, there are many possible reasons for this massive failure rate, and there is blame to go around for everyone. No doubt, the discussion about why and how the joints fai
61、led will go on for many more years. The structural system just did not measure up to demands that were more severe than expected. What should be kept in mind, however, is that no structure collapsed or caused even superf
62、icial nonstructural damage, and no person was injured or killed. In the strictest sense the struct</p><p> 7. Future directions of structural steel research and conclusion</p><p> The future h
63、olds many challenges for structural steel research. The ongoing work necessitated by the two recent earthquakes that most affected conventional design methods, namely, the Northridge earthquake in the US and the Kobe
64、 earthquake in Japan, will continue well into the first decade of the next Century. It is very likely that future disasters of this type will bring yet other problems to the steel research community. There is a profound
65、change in the philosophy of design for disasters</p><p> Another major challenge will be the emergence of many new materials such as high-performance concrete and plastic composite structures. Steel structu
66、res will continually have to face the problem of having to demonstrate viability in the marketplace. This can only be accomplished by more innovative research. Furthermore, the new comprehensive limit-states design codes
67、 which are being implemented worldwide, need research to back up the assumptions used in the theories.</p><p> Specifically, the following list highlights some of the needed research in steel structures: &l
68、t;/p><p> Systems reliability tools have been developed to a high degree of sophistication. These tools should be applied to the studies of bridge and building structures to define the optimal locations of mon
69、itoring instruments, to assess the condition and the remaining life of structures, and to intelligently design economic repair and retrofit operations.New developments in instrumentation, data transfer and large-scale co
70、mputation will enable researchers to know more about the response of structures u</p><p> The state of knowledge about the strength of structures is well above the knowledge about serviceability and durabil
71、ity. Research is needed on detecting and preventing damage in service and from deterioration.</p><p> The areas of fatigue and fracture mechanics on the one hand, and the fields of structural stability on t
72、he other hand, should converge into a more Unified conceptual entity.</p><p> The problems resulting from the combination of inelastic stability and low-cycle fatigue in connections subject to severe cyclic
73、 loads due to seismic action will need to be solved.</p><p> The performance of members, connections and connectors (e.g., shear connectors) under severe cyclic and dynamic loading requires extensive new re
74、search, including shakedown behavior. </p><p> The list could go on, but one should never be too dogmatic about the future of such a highly creative activity as research. Nature, society and economics will
75、provide sufficient challenges for the future generation of structural engineers.</p><p> 本文出自:https://www.researchgate.net</p><p> 近期美國在鋼結(jié)構(gòu)和鋼筋混凝土結(jié)構(gòu)研究和設(shè)計方面的發(fā)展</p><p> 這篇文章將總結(jié)對鋼結(jié)構(gòu)的
76、研究展望. </p><p> 1.鋼結(jié)構(gòu)橋梁的研究</p><p> 美國國家運輸和公路官員協(xié)會(AASTH0)是為美國橋梁發(fā)布設(shè)計標(biāo)準(zhǔn)的權(quán)威。1994年它發(fā)行了一個新的設(shè)計規(guī)范,這是一個限定性規(guī)范,它是以可靠性理論為基礎(chǔ)而建立的。在過去10年中的大量工作促 使了該規(guī)范的發(fā)展,尤其是在對原有規(guī)范的校準(zhǔn)和概率性評估方面。連同國際單位制的引入,目前該規(guī)范已經(jīng)應(yīng)用于各個設(shè)計事務(wù)所。這種新
77、的設(shè)計方法還存在許多問題,對橋梁擎體系統(tǒng)的可靠性研究還有很多新的課題。一個目前的課題就是研究并發(fā)展概率模型、荷載系數(shù)以及合理的荷載組合法則,以處理活載和風(fēng)載;活載和地震;活載、風(fēng)和船只碰撞;船只碰撞、風(fēng)和沖刷作用這些共同作用對橋的影響。此外,還通過利用現(xiàn)代監(jiān)控工具,例如聲傳播技術(shù)和其他非破壞性測試方法,對橋體進(jìn)行現(xiàn)場測量。這些現(xiàn)場工作不僅需要并行的試驗室研究相配合,還需要快速發(fā)展高科技數(shù)據(jù)傳輸方法。</p><p&g
78、t; 美國有數(shù)量眾多的年代久遠(yuǎn)的鋼橋,許多問題是由疲累和腐蝕引起的。最近里海大學(xué)完成了對紐約Williamsburg大橋足尺構(gòu)件的抗疲勞研究。AASTHO的橋體概率評估規(guī)定自1989年起開始生效,它通過結(jié)合現(xiàn)場監(jiān)測和概率分析等合理方法對結(jié)構(gòu)未來使用時間進(jìn)行評估。由于許多問題還未得到解決,這樣的活動同樣促進(jìn)了進(jìn)一步的研究工作。其中之一是對混合結(jié)構(gòu)橋受剪連接部件強(qiáng)制破壞的研究。這項工作最近已經(jīng)在密蘇里大學(xué)完成了。 </p>
79、<p> 除了疲累和腐蝕,橋梁的主要危險是地震引起的潛在的破壞。這也引發(fā)了對鋼橋上部構(gòu)造和混凝土橋墩的修理和新式設(shè)計的諸多研究。國內(nèi)的許多橋梁正在進(jìn)行加固以抵抗地震。其中一個引起廣泛研究興趣的領(lǐng)域是用一層層的高性能加固塑料“圍裹”住混凝土柱,以增強(qiáng)其性能。</p><p> 前述的研究工作主要是針對現(xiàn)有結(jié)構(gòu)的性能和新橋梁的設(shè)計。然而,對新穎橋梁結(jié)構(gòu)的研究也充滿活力。這方面的研究主要圍繞將高強(qiáng)鋼應(yīng)
80、用于新型板式支架和箱式支架橋梁,例如波形網(wǎng)格、開口和封閉結(jié)合的形式及更長跨度的桁架橋。在此必須指出,除了對鋼橋的工作,還有一個非?;钴S的研究領(lǐng)域,那就是對超高強(qiáng)混凝土預(yù)應(yīng)力梁性能的研究。目前,對使用高性能塑性混合元件的小型橋梁的性能和設(shè)計也有廣泛研究。對使用鋼筋混凝土分段的連續(xù)橋體系,在正彎矩和負(fù)彎矩區(qū)域都得到了考慮。一些研究者發(fā)展了高強(qiáng)模型來模擬獨立板梁的三維非線性表現(xiàn),并且對這種結(jié)構(gòu)彎曲前及彎曲后的性能進(jìn)行了許多研究。此外還進(jìn)行了伴
81、隨試驗,特別是針對高性能鋼建造的部件。一座實物大小使用這種鋼材的橋已經(jīng)被設(shè)計出來,并且很快就將建造,然后進(jìn)行交通荷載測試。對于大膨脹連接元件及高速公路標(biāo)志結(jié)構(gòu)的疲勞研究也在進(jìn)行中。</p><p> 最后要提到的是鋼筋混凝土水平彎曲鋼架橋研究的興起。明尼蘇達(dá)大學(xué)剛完成的一個項目,他們對一座歪斜彎曲的橋梁在施工各個階段——從預(yù)制工場到建造完畢——的應(yīng)力和變形進(jìn)行了監(jiān)控。測量到的應(yīng)力和變形與計算值吻合得相當(dāng)好。施工
82、階段的應(yīng)力和變形相對很小,這表明施工過程對橋系統(tǒng)并不產(chǎn)生嚴(yán)重?fù)p壞。目前這座橋正在接受使用荷載試驗,通過滿載沙礫的卡車施加荷載,這個過程要持續(xù)兩年,之后三將繼續(xù)對橋在使用荷載長期作用下性能的變化進(jìn)行研究。一個主要的測試項目已經(jīng)在位于華盛頓的聯(lián)邦高速公路管理局試驗室展開,一座1/2比例的彎曲混合梁橋目前正在測試以確定其極限狀態(tài)。這座試驗橋被設(shè)計為自身的試驗框架,測試后不同的部件可以被更換。在真實邊界條件和約束下進(jìn)行了各種柔性試驗、剪切試驗和
83、彎剪共同作用試驗。還通過有限元分析給這些試驗建模,以檢查真實值和預(yù)測值的一致性。根據(jù)獲得的認(rèn)識來完善最終的設(shè)計規(guī)范。這是目前美國最大的橋梁研究項目。</p><p> 從上述討論可以發(fā)現(xiàn),盡管全國的高速公路和鐵路系統(tǒng)并未大規(guī)模擴(kuò)張,但在橋梁領(lǐng)域卻開展了廣泛研究。對于研究人員和交通工程師而言,主要的挑戰(zhàn)是對雖然老化但仍可正常使用的結(jié)構(gòu)的維護(hù),應(yīng)在保持其安全和可用性的前提下考慮逐步替換它們。</p>
84、<p> 2.鋼構(gòu)件和鋼框架結(jié)構(gòu)的研究</p><p> 目前有很多關(guān)于鋼結(jié)構(gòu)建筑的強(qiáng)度和性能的研究。其中最重要的與劇烈地震時鋼結(jié)構(gòu)的性能和設(shè)計有關(guān)。這個話題將在接下來的內(nèi)容中討論。非地震領(lǐng)域中最重要的研究趨勢如下。 許多大學(xué)中都展開了對結(jié)構(gòu)分析與設(shè)計中的“先進(jìn)”方法的積極研究,最著名的如康納爾大學(xué)、普度大學(xué)、斯坦福大學(xué)和喬治亞理工大學(xué)。這些分析方法是用于決定結(jié)構(gòu)在即將失效或失效后荷載——變形
85、之間的性能,包括非彈性性狀、內(nèi)力重分布、塑性鉸的形成、二級影響和框架失穩(wěn)。當(dāng)這些方法完全運作時,結(jié)構(gòu)無需再經(jīng)過元件校核,因為對框架的有限元分析自動完成了這個工作。除了對應(yīng)用這種高級分析的最佳方法的研究外,還有很多關(guān)于簡化方法的研究工作,這些簡化方法可以在設(shè)計事務(wù)所中輕易地應(yīng)用,同時還保持了復(fù)雜分析的優(yōu)勢。對于平面內(nèi)的性能,這種高級分析方法已發(fā)展得很完善,但對于考慮雙軸向彎曲或水平扭轉(zhuǎn)翹曲的情形還需進(jìn)一步研究。目前雖已取得了一定成果,但研
86、究還遠(yuǎn)末完成。</p><p> 框架行為另外一方面的工作就是對有半剛性節(jié)點框架的研究。美國鋼結(jié)構(gòu)學(xué)會(AISC)已經(jīng)發(fā)布了用于事務(wù)所的設(shè)計方法。目前的研究主要集中于地震荷載下這類結(jié)構(gòu)的行為。有結(jié)果表明在地震情況下可以使用這類框架,即8—10層中等地震荷載作用下的建筑。使用半剛性連接框架的結(jié)構(gòu)前景廣闊,這主要得益于像喬治亞理工大學(xué)的Leon及其他研究者的努力。</p><p> 對構(gòu)件
87、性能的研究主要是應(yīng)用高級商業(yè)有限元軟件對密集角和寬翼緣梁構(gòu)件的分析。這種研究是對20世紀(jì)50年代和60年代的一些假設(shè)的檢驗,那時塑性設(shè)計的簡潔性和對支撐的要求是基于半經(jīng)驗的基礎(chǔ)形成的。非線性有限元計算允許對已有試驗進(jìn)行“重新測試”,并對新型元件和新型鋼種進(jìn)行新的計算機(jī)試驗。喬治亞理工大學(xué)的懷特是這方面的先鋒之一。這篇文章后邊還將提及美國軍事學(xué)院和明尼蘇達(dá)大學(xué)的Earls目前進(jìn)行的研究工作。此類研究的重要性在于:可以通過在計算機(jī)上進(jìn)行參數(shù)
88、研究對極端屈服和變形現(xiàn)象進(jìn)行有效的檢驗。計算機(jī)所得的結(jié)果可以通過原有試驗和少量新試驗來進(jìn)行校核。這些研究對那些至今未得到完全解決的老問題帶來了希望。</p><p> 3.對冷加工鋼結(jié)構(gòu)的研究</p><p> 在地震之后,目前美國最活躍的研究領(lǐng)域就是冷加工鋼結(jié)構(gòu)。原因是相關(guān)支柱產(chǎn)業(yè)正在擴(kuò)大,特別是在獨立家庭住宅領(lǐng)域。隨著木材價格上漲,鋼結(jié)構(gòu)房屋顯得越來越經(jīng)濟(jì)。多模式大變形情況時薄壁結(jié)
89、構(gòu)的翹曲問題引起了穩(wěn)定研究領(lǐng)域種的一些最優(yōu)秀人才的關(guān)注。由此,許多問題得到了解決:如復(fù)雜單元增強(qiáng)結(jié)構(gòu),C型和Z型梁的穩(wěn)定性及支撐,混合板,穿孔柱,穩(wěn)定焊接屋頂系統(tǒng),復(fù)雜形狀梁的穩(wěn)定性及支撐,使用高應(yīng)力高抗拉比鋼材的冷加工元件,及其他許多有趣的應(yīng)用。美國鋼鐵學(xué)會(AISl)在1996年發(fā)布了新的擴(kuò)張標(biāo)準(zhǔn),使得上述許多研究結(jié)果能被設(shè)計人員所利用。</p><p> 4.鋼筋混凝土混合結(jié)構(gòu)的研究</p>
90、<p> 美國幾乎所有的結(jié)構(gòu)性鋼橋和建筑都是使用梁或桁架混合建造的。相反,很少有柱是混合構(gòu)件。當(dāng)前對混合柱的研究非常活躍,這將填補(bǔ)此類構(gòu)件技術(shù)信息的空缺。鋼管中填充高強(qiáng)混凝土的課題研究尤其活躍。明尼蘇達(dá)大學(xué)的HaUar對此進(jìn)行了研究,他的一個研究目標(biāo)就是對單調(diào)荷載和循環(huán)荷載下混凝土填充柱和梁柱發(fā)生的各種相互作用建立一個基本的了解。另一個目標(biāo)是獲得對寬翼梁與混凝土填充管連接的性能的基本認(rèn)識。</p><p
91、> 其他主要的研究工作涉及同時承受正負(fù)彎矩作用的寬翼橋桁架裝配的性能和設(shè)計。該工作由得克薩斯大學(xué)的費蘭克和喬治亞理工的懷特展開,工作包括了對薄壁加勁腹板翹曲和翹曲后深入廣泛的研究。前邊提到了對混合橋強(qiáng)制破壞的檢驗。需要解決的問題是在大于彈性極限荷載而小于塑性機(jī)理荷載的循環(huán)荷載作用下,是否橋桁架會失去混合作用的能力。一項新的研究已經(jīng)在明尼蘇達(dá)大學(xué)展開,它對由螺栓剪切連接的半剛性鋼架系統(tǒng)和混凝土剪力墻間的相互作用進(jìn)行了研究。<
92、/p><p><b> 5,對連接的研究</b></p><p> 連接形式的多樣性使研究者對連接問題的研究很感興趣。目前大部分的連接工作主要與本文下一節(jié)要討論的地震問題相關(guān)。對非地震連接的最大興趣在于各類型的半剛性連接單一彎曲扭轉(zhuǎn)特性的研究。</p><p> 6.地震力作用下結(jié)構(gòu)及其連接的研究</p><p>
93、目前美國對結(jié)構(gòu)性鋼研究所作的努力主要動力來源于1994年1月17日Northridge,加利福尼亞,洛杉磯北部的地震。鋼結(jié)構(gòu)的主要問題是滿足條件的剛性連接脆性破裂導(dǎo)致的結(jié)構(gòu)大規(guī)模失效。在超過150幢1~26層的建筑中有上千個破壞的連接部分。建筑物并未倒塌,它們也沒有出現(xiàn)任何外部龜裂,此外也沒有人員傷亡。一個典型的連接如圖2.2,1所示。</p><p> 在該連接中,梁翼緣通過完全對接焊透與柱焊接。腹板與梁拴接
94、,與柱焊接。這類連接的特征是梁翼緣底部的支撐鋼筋,以及為方便梁翼緣焊接施工留下的處理孔。出現(xiàn)在焊縫中、梁翼緣中及柱翼緣上的裂縫有時會進(jìn)入腹板。</p><p> 這個問題被發(fā)現(xiàn)后,許多大型研究項目在各大學(xué)試驗室展開,如加利福尼亞大學(xué)的圣·地亞哥分校、西雅圖的華盛頓大學(xué)、奧斯汀的得克薩斯大學(xué)、賓夕法尼亞的里海大學(xué)伯利恒分校,等等。在聯(lián)邦應(yīng)急管理局(FEMA)指導(dǎo)下美國政府展開了一個全國性的主要研究工作。
95、這項工作被認(rèn)為是非常龐大,沒有任何獨立研究機(jī)構(gòu)能夠單獨完成。從而三個加利福尼亞團(tuán)體成立了一個協(xié)會以管理這項工作,它們是:</p><p> (1)加利福尼亞結(jié)構(gòu)工程協(xié)會。</p><p> (2)應(yīng)用科技理事會。</p><p> (3)加利福尼亞大學(xué)地震工程研究所。</p><p> 三個機(jī)構(gòu)名稱的首字母形成了縮寫詞SAC,這就是該
96、聯(lián)合協(xié)會的名稱。在該協(xié)會的支持下,大量的研究工作得以開展,并且在接下來的幾年中發(fā)表了很多成果。</p><p> 這個項目的目標(biāo)是建立可靠、可行及經(jīng)濟(jì)的指導(dǎo)原則,以識別和檢測危險鋼結(jié)構(gòu)建筑,維修和升級破壞建筑,設(shè)計新建筑結(jié)構(gòu),對未破壞建筑的翻新。很明顯,它的影響范圍遠(yuǎn)遠(yuǎn)超出了連接問題。</p><p> 研究的第一階段在1996年底完成,它的主要目標(biāo)是達(dá)成一個過渡性的指導(dǎo)原則,以使設(shè)計
97、工作得以繼續(xù)。它包括了以下內(nèi)容:</p><p> ·在目前技術(shù)水平下對鋼連接知識的評估。</p><p> ·對建筑破壞的調(diào)查。</p><p> ·對地面運動的評估。</p><p> ·詳細(xì)的建筑分析和案例研究。</p><p><b> ·初
98、步試驗項目。</b></p><p> ·專業(yè)訓(xùn)練和質(zhì)量保證項目。</p><p> ·《臨時設(shè)計指導(dǎo)原則》的發(fā)表。</p><p> 在第一階段工作中發(fā)表了許多報告。這篇文章末尾列舉了其中的一部分。</p><p> 在SAC項目的第一階段,進(jìn)行了一系列靜載或有時循環(huán)動載作用下的足尺連接試驗。有關(guān)于先
99、Northridge型的連接(即地震發(fā)生時已存在的連接),有已修復(fù)和升級的部件,還有新的建議使用的連接部件。圖2;2.2是該試驗項目示意性說明。圖2.2.3是一些建議使用的新設(shè)計策略。</p><p> 接下來是一些導(dǎo)致連接失效的可能原因,可能是單獨影響,也可能是共同影響:</p><p> ·現(xiàn)場焊接時人工的不足。</p><p> ·焊
100、接材料刻痕硬度不足。 </p><p> ·支撐鋼筋的應(yīng)力集中發(fā)生點。</p><p> ·載支撐鋼筋附近未焊透。</p><p><b> ·焊頭過大。</b></p><p><b> ·焊縫中有焊渣。</b></p><
101、p> 許多失效可直接歸咎于焊接或連接材料,但這些年來更嚴(yán)重的與結(jié)構(gòu)體系相關(guān)的I司題主要是基于經(jīng)濟(jì)上的考慮。結(jié)構(gòu)體系采用了相對較少的重型剛性框架構(gòu)件,這些構(gòu)件是設(shè)計用來吸收作用于結(jié)構(gòu)大部件上的地震力的。這些較少的抗水平力框架不能提供足夠的儲備。使用更多的小型構(gòu)件框架可以提供一個更強(qiáng)更柔的結(jié)構(gòu)體系。還存在一個尺寸影響:使用小型構(gòu)件連接的試驗未經(jīng)過足夠的試驗驗證就推向了使用大型構(gòu)件連接。一個大型初始脈沖效應(yīng)可能引發(fā)了動荷載,引起包含了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木工程外文翻譯--近期美國在鋼結(jié)構(gòu)和鋼筋混凝土結(jié)構(gòu)研究和設(shè)計方面的發(fā)展
- 外文翻譯--鋼筋混凝土結(jié)構(gòu)設(shè)計
- 房建外文翻譯--鋼筋混凝土結(jié)構(gòu)的抗震設(shè)計和砌體建筑
- 外文翻譯---混凝土,鋼筋混凝土和預(yù)應(yīng)力混凝土
- 鋼筋混凝土結(jié)構(gòu)
- 課程設(shè)計鋼筋混凝土結(jié)構(gòu)鋼筋混凝土結(jié)構(gòu)課程設(shè)計
- 課程設(shè)計-鋼筋混凝土結(jié)構(gòu)鋼筋混凝土結(jié)構(gòu)課程設(shè)計
- 鋼筋混凝土結(jié)構(gòu)優(yōu)化設(shè)計
- 鋼筋混凝土外文翻譯
- 鋼筋混凝土外文翻譯
- 外文翻譯---鋼筋混凝土結(jié)構(gòu)設(shè)計制約因素(部分)
- 鋼筋混凝土坡屋頂?shù)慕Y(jié)構(gòu)設(shè)計外文翻譯
- 土木畢業(yè)設(shè)計外文翻譯--鋼筋混凝土結(jié)構(gòu)設(shè)計
- 鋼筋混凝土結(jié)構(gòu)復(fù)習(xí)
- 鋼筋混凝土與鋼結(jié)構(gòu)造價對比(下)
- 鋼筋混凝土結(jié)構(gòu)論文
- 淺談鋼筋混凝土結(jié)構(gòu)抗震設(shè)計
- 鋼筋混凝土結(jié)構(gòu)課程設(shè)計
- 《鋼筋混凝土結(jié)構(gòu)》課程設(shè)計
- 鋼筋混凝土結(jié)構(gòu)課程設(shè)計
評論
0/150
提交評論