版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 2900漢字,1560單詞,8600英文字符</p><p> 出處:Chen Y. Creep Tests and Viscoelastic Analysis of Rubber Asphalt Concrete[C]// International Conference on Traffic and Transportation Studies. 2010:1371-1377.<
2、/p><p><b> 外文:</b></p><p> Creep Tests and Viscoelastic Analysis of Rubber Asphalt Concrete</p><p> Yuliang Chen1</p><p> 1Lecturer, School of Engineering
3、& Architecture, East China Jiaotong,University,Nanchang, Jiangxi, China, 330013. Phone: (86731) 230-9023; Email:chenyuliangjx@yahoo.com.cn</p><p><b> Abstract</b></p><p> The p
4、aper uses rubber asphalt concretes trabecular, carries on the bending creep experiment on the MTS810 material testing machine, and the viscoelastic analysis.The bending creep experiment and the viscoelastic analysis ind
5、icated that the rubber asphalt concretes' creep compliance is lower, namely under the unit load condition the rubber asphalt concretes' distortion is small. Along with stress level's increase, he creep strain
6、 speed growth is slower, and the rubber asphalt concrete has a good</p><p> Key Words:</p><p> road engineering; rubber asphalt concrete; creep; viscoelastic; stress level; creep compliance<
7、;/p><p> Introduction</p><p> With many years’ successful application both in China and abroad, rubber asphalt concretes, as a type of pavement material used in road engineering is obvious in env
8、ironmental protection and public welfare function. Itnot only can solve the social problem caused by waste tires, it can also reduce the pavement thickness, prolong service life of the pavement, delay the reflection crac
9、k, reduce the driving noise, and be fine winter flexible. It is one of the effective ways to solve heavy load trans</p><p> Currently, researchers mainly concentrate on two aspects: 1) the rubber and the as
10、phalt concrete action mechanism, and 2) the rubber asphalt concrete pavement performance (Zhou et al. 2007). The research mostly emphasizes the macroscopic angle and uses tests as the main reason to research rubber aspha
11、lt concretes’ pavement performance. Correlation theory analyses are few, and research is needed about rubber asphalt concretes with high temperature creep and the viscoelastic aspect. Therefore, the</p><p>
12、 Test Materials and Method</p><p> Test Materials. The aggregate in test are basalt of some material field in Henan province, and the technical indexes are shown in Table 1. The mineral powder in the test i
13、s the mineral powder of limestone in Liuyang city of the Hunan province, and the technical indexes are shown in Table 2. The binder is a rubber-modified asphalt provided by afactory in the Henan province, and the technic
14、al indexes are shown in Table 3.</p><p> Test Method. The commonly used creep test method has the single axle compressive creep, the splitting creep, the bending creep, and so on. The single axle compressio
15、n and the splitting creep test method influencing factors are many, finally the changeability is big. The bending creep experiment loads are small, the experiment slightly simple and so on, recommends for the present exp
16、erimental regulations and American SHRP. Therefore, this paper uses the bending creep testing method.</p><p> The test sample forming method uses the wheel roller method, then cuts 300×30×35 mm tr
17、abecular. The test sample’s effective span is 200 mm, and the test carries on the bending creep experiment on the MTS810 multi-purpose material testing system with a temperature of 20℃. Because the bending creep test res
18、ult has been a big influence by the stress level, stress level choice too large or too small causes the distortion development quickly or excessively slow, the test sample either breaks very qui</p><p> 0.3
19、, and 0.44 stress ratios of the bending failure load carries on the comparative trial, observes the hour distortion rate, when the stabilization period (total creep curve for linear stage) surpasses 1h, use the strength
20、level to carry on the bending creep experiment. This test result indicated when the stress ratio chooses 0.2, the test sample distortion is slow. When the stabilization period surpasses 1h, the test sample</p><
21、;p> Test itemsRemarks</p><p><b> Size</b></p><p><b> 3</b></p><p><b> range(%)</b></p><p> <0.15 mm97.290-100</p>
22、;<p> <0.075 mm77.875-100</p><p><b> T0351</b></p><p> 4Hydrophilic coefficient0.600<1T0353</p><p> Table 3. Technical indexes of modified asphalt
23、.</p><p><b> Test</b></p><p> Test resultsSecification requirement</p><p> Test Result Analysis</p><p> When the stress ratio is 0.2, the experimental
24、time and mid-span tensile strain curve is shown in Figure 1. As shown by Figure 1, 20℃, under 0.2 stress ratios the rubber asphalt concretes' bending creep curve, is the same with the plain asphalt concretes bending
25、creep, its creep curve may also divide into the migration time, the stabilization period and the breakdown time. The migration time's creep growth, the stabilization</p><p> period strain speed mainta
26、ins stable, belongs to the linear deformation stage, and breakdown time total creep sharp growth. Through the creep test result analysis, may obtain the material creep rate, establishes the rheological model, obtains th
27、e rheological parameter, evaulates high temperature rheological performance of material.</p><p> Figure 1. 20 oC, under 0.2 stress ratio, time and mid-span tensile strain tension strain curve.</p>&l
28、t;p> Creep Compliance.The creep compliance expresses distortion under the unit stress. The creep compliance is bigger, and the distortion under the unit load condition is bigger. Min et al. (2004) proposed may use t
29、he creep compliance of 1000s (J1000) as design parameter of pavement. According to the standard [Standard test methods of bitumen and bituminous mixtures for highway engineering (JTJ 052-2000), China], the curving creep
30、compliance equation is as shown in Eq. 1., and can obtain the creep c</p><p> J ?t ????4bh</p><p> d ?t ??106</p><p><b> (1)</b></p><p><b> L3 F&l
31、t;/b></p><p> Creep Rate.The migration time, the stabilization period creep strainε (t) , is mainly decided by the creep strain rate speed ε and load time t (as shown in Eq. 2). We can use the strain rat
32、e of the creep curve stabilization period to charaterize material creep characteristic, because the creep strain rate is related to distortion of the stabilization period stage, and directly reflects the ability of the m
33、aterial resistance distortion under repeat loading.</p><p><b> ??t ?</b></p><p><b> ???c ?</b></p><p> 1 ?t ???1? e</p><p> ?espeed ?&l
34、t;/p><p><b> (2)</b></p><p><b> ?</b></p><p> where: ε (t) is creep strain; e ε is immediate acknowledgment elastic deformation; t is time; β, α is the exper
35、iment constant.</p><p> Low temperature bending creep test results of the plain asphalt concretes and the rubber asphalt concretes is shown in Table 5.</p><p> From Table 5 we can see, under t
36、he same stress level, the rubber asphalt concretes’ creep strain rate is the plain asphalt concretes 59.7%, which indicates the rubber asphalt concretes’ resistance distortion ability is stronger than plain asphalt concr
37、etes’ resistance distortion ability under repeat loading.</p><p> Viscoelastic Analysis.The common viscoelasticity model includes: Maxwall model; Kelven model; Ven der poel model; Burgers model, and so on.
38、In these four models (Lougheed and Papaglannakis 1996; Nolank 1995), the Burgers model can well reflect the distortion characteristic of asphalt concrete, manifesting especially in the load process. But the Burgers model
39、 also has a flaw: The asphalt concrete permanent deformation is attributed for time linear function, but in fact the viscosity increase is a</p><p> This paper uses Tongji University to propose “the four un
40、it five parameters” model (Xu 1992), the four unit five parameters” model considered the asphalt concrete has “the consolidation effect,” namely its viscosity increase is along with the load times extension “The four uni
41、t five parameters” model has carried on the following revision to the Burgers model: Exterior dashpot of the model is expanded to one generalized dashpot, which is paralleled by many different viscosity dashpots, and alo
42、ng </p><p> According to strain value obtained from the experiment, we can back calculate viscoelasticity parameters E0, E1, A, B, and η1 of asphalt concrete through the iterative method (as shown in Table
43、6).From Table 6 we can see, the rubber asphalt concretes relaxation time will be obviously longer than the plain asphalt</p><p> concretes relaxation time, which indicated that the rubber aspha
44、lt concretes have the good resistance to permanent deformation ability.</p><p> Table 6. Asphalt concrete viscoelastic parameters(20℃).</p><p><b> Type</b></p><p><
45、b> concretes</b></p><p> Conclusions</p><p> The paper uses rubber asphalt concretes trabecular and carries on the bending creep experiment and the viscoelastic analysis. The conclus
46、ions are given as follows:</p><p> Compared with plain asphalt concretes, the rubber asphalt concretes distortion is small under the unit load condition.</p><p> The resistance to deformation
47、ability of rubber asphalt concretes is stronger than that of plain asphalt concretes under repeated loading.</p><p> Compared to the plain asphalt concretes, the rubber asphalt concretes have the better res
48、istance to permanent deformation ability.</p><p> References</p><p> Bahia, H. U., Anderson, D. A., and Christensen, D. W. (1992). “The bending beamrheometer; A simple device for measuring low
49、-temperature rheology ofasphalt binders.” AAPT, 61,117-153.</p><p> Chehab, G. (2002). “Characterization of asphalt concrete in tension using a viscoelastoplastic model.”</p><p> Ph.D
50、. dissertation, North Carolina State University, Raleigh, NC.</p><p> Chehab, G. R., Kim, Y. R., Schapery, R. A., Witczak, M. W., and Bonaquist, R. (2003), “Characterization of asphalt concrete in uniaxial
51、tension using a viscoelastoplastic model.” Paper presented at the Association of Asphalt Paving</p><p> Technologists Annual Meeting.</p><p> Gibson, N. H., Schwartz, C. W., Schapery, R. A.,
52、and Witczak, M. W. (2003), “Viscoelastic, viscoplastic, and damage modeling of asphalt concrete in unconfined compression.” Paper presented at the Transportation Research Board Annual Meeting.</p><p> JTJ 0
53、52-2000 (2000). “Standard test methods of bitumen and bituminous mixtures for highway engineering.” Beijing: People’s Republic of China Ministry of transportation.</p><p> Kaloush, K. (2001). “Simple perfor
54、mance test for permanent deformation of asphalt mixtures.” Ph.D. dissertation, Arizona State University, Tempe, AZ.</p><p> Lin, X. F., and Wu, Q. I. (1992). “Rubber modified road asphalt and microscopic st
55、ructure.” Journal of Synthetic Rubber Industry, 23(3),166-169.</p><p> Lougheed, T. J., and Papaglannakis, A. (1996). “Viscosity characteristics of rubber-modified asphalts.”</p><p> Journal o
56、f Materials in Civil Engineering, 8,153-156.</p><p> Motola, Y. (2003). “A study of the effect of shear stress reversal on the behavior of asphalt concrete.” M.Sc Thesis (in Hebrew), Technion, Haifa, Israel
57、.</p><p> Mun, S., Chehab, G. R., and Kim, Y. R. (2007). “Determination of time-domain viscoelastic functions using optimized interconversion techniques.” Road Materials and Pavement Design. Lavoisier, In P
58、rint.</p><p> Nolank, L. (1995). “Low temperature nature of PE modifier binder and asphalt concrete mix.” AAPT, 1995, 4(5),64-67.</p><p> Peng, H., and Lu, W. M. (2001). “Research on performan
59、ce and technology of the rubber powder modified asphalt mixture.” China Journal of Highway and Transport, 14(12),4-7.</p><p> Uzan, J. (1996) “Asphalt concrete characterization for pavement performance pred
60、iction.” Assoc. Asphalt Pavement Technol., 65,573-607.</p><p> Xu, S.-F.(1992). “A rheological model representing the deformation behavior of asphalt mixtures.”</p><p> Mechanics
61、and Engineering, 14(1),37-40.</p><p> Zhou, Z. G., Tan, J., and Li, X. L. (2007). “Fiber modification rubber asphalt high temperature stability test research.” Journal of China and Foreign Highway, 12(06),
62、171~173.</p><p><b> 譯文:</b></p><p> 橡膠瀝青混凝土的蠕變和粘彈性分析</p><p><b> 陳玉良 1</b></p><p> 講師,華東交通大學工程與建筑學院,中國江西南昌,郵編 330013。電話:(86731)230-9023; 電子郵件
63、:chenyuliangjx@yahoo.com.cn</p><p><b> 摘要</b></p><p> 本文采用橡膠瀝青混凝土小梁在 MTS810 材料試驗機上進行彎曲蠕變實驗,并進行彈性分</p><p> 析。彎曲蠕變試驗和彈性分析表明,橡膠瀝青混凝土的蠕變柔量較低,即機組負荷條件下的橡 膠瀝青混凝土的變形小。隨著應力水平的
64、增加,它蠕變應變速度增長較慢,橡膠瀝青混凝土具 有良好的抗永久變形能力。 </p><p> 關鍵詞:道路工程;橡膠瀝青混凝土;蠕變;粘彈性;應力水平;蠕變柔量</p><p><b> 簡介</b></p><p> 在國內外多年的成功應用,橡膠瀝青混凝土作為一種新型的路面材料應用在道路工程的環(huán) 境保護、公益中作用明顯。它不僅可以解決廢
65、舊輪胎造成的社會問題,它也可以減小路面的厚 度,延長路面的使用壽命,延緩反射裂縫,降低傳動噪聲,并可以改善冬天路面的柔度。它是 解決重載運輸和早期損壞問題的有效途徑。就公路建設而言,采用橡膠瀝青混凝土可以節(jié)省建 設投資。在中國,我們用有限的財政和物資建造高質量瀝青路面(彭,陸 2001)。因此,橡膠 瀝青混凝土在公路應用中有最佳前景。</p><p> 目前,研究人員研究方向主要集中在兩個方面:1)橡膠和瀝青混
66、凝土的作用機理,和 2) 橡膠瀝青混凝土路面使用性能(周,等人。2007)。本研究主要側重于宏觀的角度,采用試驗 研究橡膠瀝青混凝土路面性能的主要原因。相關理論分析比較少,研究需要的是具有高溫蠕變 和彈性的橡膠瀝青混凝土。因此,本文采用橡膠瀝青混凝土小梁在 MTS810 材料試驗機進行彎 曲蠕變實驗,并進行彈性分析。</p><p><b> 試驗材料和方法</b></p>
67、<p> 試驗材料。測試所用的骨料是河南省的一些原材料區(qū)的玄武巖,技術指標如表 1 所示。測</p><p> 試所用的礦物粉是湖南省瀏陽市的石灰?guī)r礦粉,技術指標如表 2 所示。粘合劑是河南省的工廠 提供的橡膠改性瀝青,技術指標如表 3 所示。</p><p> 試驗方法。常用的蠕變試驗方法有單軸壓縮蠕變,劈裂蠕變,彎曲蠕變,等等。單軸壓縮 和劈裂蠕變試驗方法的影響因素很多
68、,最后的可變性大。彎曲蠕變試驗載荷小,實驗相對簡單 等,建議按目前美國 SHRP 試驗規(guī)范操作。因此,本文采用彎曲蠕變試驗方法。</p><p> 測試樣品的成型方法是使用滾輪的方法,然后剪切 300×30×35 mm 小梁。測試樣品的有效 跨度為 200 毫米,并且在 20℃時進行測試彎曲和溫度 MTS810 萬能材料試驗系統(tǒng)的蠕變試驗。 因為彎曲蠕變試驗結果守應力水平影響的較大,應力水平
69、的選擇過大或過小將導致變形發(fā)展很 快或過慢,測試樣品或者很快破壞或發(fā)展緩慢,不能分散開來,使數(shù)據(jù)分析困難。因此,在實 驗之前,研究人員必須對不同瀝青混合料進行一次性加載破壞性試驗。以 0.1,0.2,0.3,和 0.44 的應力比的彎曲破壞負荷進行對比試驗,觀察每小時失真率,當穩(wěn)定期(線性階段總蠕變曲線) 超過 1h,用強度等級進行彎曲蠕變試驗。本試驗結果表明,當應力比選擇 0.2,試樣的變形是 緩慢的。當穩(wěn)定時間超過 1h,試樣不斷裂
70、,因此,蠕變試驗采用 0.2 應力比加載。</p><p> 表 1.骨料技術指標</p><p> 循環(huán)薄膜加熱試 驗 163℃</p><p><b> 測試結果分析</b></p><p> 當應力比為 0.2,實驗時間和跨中應變曲線如圖 1 所示。</p><p> 圖 1 顯示
71、,20℃時,0.2 應力比下的橡膠瀝青混凝土的彎曲蠕變曲線,與普通瀝青混凝土的彎曲 蠕變相同,其蠕變曲線也可分為遷移階段,穩(wěn)定階段和破壞階段。遷移階段的蠕變應變速度保 持穩(wěn)定增長,穩(wěn)定期,屬于線性變形階段,破壞階段總蠕變將急劇增長。通過蠕變試驗結果分 析,可以得到材料的蠕變率,建立流變模型,得出流變參數(shù),評價材料高溫流變性能。 蠕變柔量。蠕變柔量表達了單元應力下的變形。蠕變柔量越大,單位載荷條件下的變形較大。 閔教授等人(2004)提出
72、以利用 1000s 蠕變柔量(j1000)作為路面設計參數(shù)。根據(jù)標準《中國 公路工程瀝青及瀝青混合材料標準試驗方法(JTJ 052-2000)》,彎曲蠕變方程如方程 1 中所示。, 并當瀝青混凝土 1000s 時得到的蠕變柔量,如表 4 所示。從表 4 中我們可以看到 0.2 的應力比</p><p> 下的橡膠瀝青混凝土的蠕變柔量,以及 1000s 時普通瀝青混凝土的蠕變柔量為 13.3%。因此,橡 膠瀝青混
73、凝土比普通瀝青混凝土蠕變柔量低,這表明單位載荷作用下,橡膠瀝青混凝土變形比普 通瀝青混凝土小。</p><p> J ?t ????4bh</p><p> d ?t ??106</p><p><b> (1)</b></p><p><b> L3 F</b></p>&l
74、t;p> 圖 1. 20℃下,應力比為 0.2,時間與跨中拉伸應變曲線. 蠕變率。遷移階段,穩(wěn)定階段蠕變應變ε(T),主要取決于蠕變速率速度ε和加載時間 T(如公 式 2 所示)。我們可以利用蠕變曲線穩(wěn)定階段的應變速率來描述材料的蠕變特性,由于蠕變應 變率對穩(wěn)定階段的變形有關,直接反映了重復荷載作用下材料抵抗變形的能力。</p><p> 表 4.瀝青混合料的蠕變柔量.</p><
75、;p> 類型蠕變柔量(1/MPa)</p><p> 普通瀝青混凝土0.060</p><p> 橡膠瀝青混凝土0.009</p><p> 表 5.低溫彎曲蠕變率的瀝青混凝土.</p><p> 類型平均蠕變率(1/s)</p><p> 普通瀝青混凝土5.27×10-7<
76、/p><p> 橡膠瀝青混凝土3.15×10-7</p><p><b> ??t ?</b></p><p><b> ???c ?</b></p><p> 1 ?t ???1? e</p><p> ?espeed ?</p>
77、<p><b> (2)</b></p><p><b> ?</b></p><p> 其中:ε(t)是蠕變應變;Eε是立即的彈性變形;t 為時間;β,α是實驗常數(shù)。 普通瀝青混凝土和橡膠瀝青混凝土低溫彎曲蠕變試驗結果如表 5 所示。</p><p> 從表 5 中我們可以看到,在同一應力水平下,橡膠瀝
78、青混凝土的蠕變應變率是普通瀝青混凝土 的 59.7%,這表明在重復荷載作用下橡膠瀝青混凝土的抗變形能力比普通瀝青混凝土的抗變形 能力強。 彈性分析。常見的粘彈性模型包括:麥克斯韋設想模型;開爾文模型;范德普爾模型;伯格斯 模型等等。在這四種模式(Lougheed 和 papaglannakis 1996;nolank 1995)中,Burgers 模型能 較好地反映瀝青混凝土的變形特性,在負載過程中體現(xiàn)尤其突出。但伯格斯模型也有缺陷:瀝
79、</p><p> 青混凝土永久變形歸結為時間的線性函數(shù),但實際上粘度隨著加載時間的延長而增加,因此永 久變形最終跟隨時間增幅減小的增加。因此,該模型不能很好的反映在整個卸載過程負載瀝青 混凝土的變形特性。</p><p> 本文采用同濟大學提出的“四單元五參數(shù)”模型(徐 1992),“四單元五參數(shù)”模型考慮了瀝青混 凝土的加固效果,,即其粘度是隨著加載時間的延長而增加,“四單元五參數(shù)
80、”模型對伯格斯模型 進行了如下修改:外部阻尼器沖擴展到一個整體的阻尼器,與許多不同的粘性阻尼器并聯(lián)起來, 并且隨著加載時間的延長,按照一定的規(guī)律可以增加并聯(lián)阻尼器數(shù)量。然而,這種阻尼器粘度 會隨著負載增加,這樣就有效地彌補了伯格斯模型的缺陷。 根據(jù)從實驗中得到的應變值,我們可以通過迭代方法重新計算瀝青混凝土的粘彈性參數(shù) E0, E1, A,</p><p> B, 和 η1 (如表 6 所示)。</p&g
81、t;<p> 從表 6 中我們可以看到,橡膠瀝青混凝土松馳時間會明顯比普通瀝青混凝土松馳時間還長,這 表明,橡膠瀝青混凝土具有良好的抗永久變形能力。</p><p> 表 6.瀝青混凝土的粘彈性參數(shù)(20℃).</p><p><b> E0E1A</b></p><p><b> 類型</b>&
82、lt;/p><p><b> Bη1</b></p><p> 結論 采用橡膠瀝青混凝土梁進行彎曲蠕變試驗的粘彈性分析。結論如下: (1)與普通瀝青混凝土相比,橡膠瀝青混凝土在單位負荷條件下的變形更小。 (2)在重復荷載作用下橡膠瀝青混凝土的抗變形能力比普通瀝青混凝土強。 (3)相比于普通瀝青混凝土,橡膠瀝青混凝土具有更好的抗永久變形能力。 </p>
83、<p><b> 參考文獻:</b></p><p> 1Bahia, H. U., Anderson, D. A., and Christensen, D. W. (1992). “彎曲梁流變儀;一個簡單的測量瀝青粘結劑 低溫流變性的裝置?!?lt;美國>瀝青鋪路技師協(xié)會,61117-153。</p><p> 2Chehab, G. (200
84、2). “粘彈塑性模型下瀝青混凝土受張力的特性”。博士論文,北卡羅來納州立大學,羅利,NC。 3Chehab, G. R., Kim, Y. R., Schapery, R. A., Witczak, M. W., and Bonaquist, R. (2003), “粘彈塑性模型下瀝 青混凝土在單軸拉伸時的特性?!罢撐奶岢鲈跒r青路面技術人員協(xié)會年會。</p><p> 4Gibson, N. H., Schw
85、artz, C. W., Schapery, R. A., and Witczak, M. W. (2003),“粘彈性,粘塑性,和無側限抗 壓強度的瀝青混凝土損傷模型”。論文發(fā)表于交通研究委員會年度會議。</p><p> 5JTJ 052-2000(2000). “公路工程瀝青及瀝青混合料試驗方法”,北京,中國人民共和國交通部。</p><p> 6Kaloush, K. (200
86、1). “瀝青混合料的永久變形性能的簡單測試”。博士論文,亞利桑那州國家大學,坦佩,AZ.</p><p> 7Lin, X. F., and Wu, Q. I. (1992). “橡膠改性道路瀝青的微觀結構”,合成橡膠工業(yè),23(3),166-169。 8Lougheed, T. J., and Papaglannakis, A. (1996). “橡膠改性瀝青的粘度特性?!巴聊竟こ滩牧希?153-156 9
87、Motola, Y. (2003). “反向抗剪應力對瀝青混凝土性能的影響研究”。碩士論文(希伯來文),理工,Haifa,以 色列。</p><p> 10Mun, S., Chehab, G. R., and Kim, Y. R. (2007). “使用優(yōu)化轉換技術測定時域粘彈性功能”路面材料和路面 設計,Lavoisie,已出版。</p><p> 11Nolank, L. (19
88、95). “PE 改性劑粘合劑和瀝青混凝土混合料的低溫性質”。<美國>瀝青鋪路技師協(xié)會, 1995,</p><p> 4(5),64-67.</p><p> 12Peng, H., and Lu, W. M. (2001). “橡膠粉改性瀝青混合料性能及工藝研究”。中國公路學報,14(12),4-7。</p><p> 13Uzan, J. (
89、1996). “瀝青混凝土路面性能特性預測“。瀝青路面技術協(xié)會,65573-607。</p><p> 14Xu, S.-F.(1992). “瀝青混合料變形性能的流變模型。“力學與工程,14(1),37-40。</p><p> 15Zhou, Z. G., Tan, J., and Li, X. L. (2007). “纖維改性橡膠瀝青的高溫穩(wěn)定性試驗研究?!敝袊蛧夤穼W 報,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 瀝青混合料的非線性粘彈性蠕變分析.pdf
- 碾壓式瀝青混凝土粘彈性模型分析與優(yōu)選.pdf
- 考慮應變率和界面效應的瀝青混凝土動態(tài)粘彈性特征.pdf
- 水工瀝青混凝土粘彈性本構模型實驗研究.pdf
- 瀝青混凝土路面結構蠕變損傷研究.pdf
- 海洋混凝土的蠕變破壞分析.pdf
- 海洋混凝土的蠕變破壞分析(1)
- 考慮界面影響的瀝青混凝土粘彈性細觀力學模型.pdf
- 瀝青混凝土的宏細觀粘彈性動力學響應.pdf
- 芻議橡膠瀝青混凝土的施工
- 溫度及靜動荷載作用下瀝青混凝土路面結構粘彈性分析.pdf
- 巖石粘彈性非定常蠕變方程的參數(shù)辨識.pdf
- 瀝青砂漿粘彈性試驗分析.pdf
- 橡膠瀝青混凝土的施工工藝
- 高瀝青混凝土心墻壩粘彈性模型研究及三維數(shù)值分析.pdf
- 改性阻燃瀝青、橡膠瀝青混凝土報價文件
- 彈性橡膠混凝土動態(tài)響應研究.pdf
- 粘彈性結構的蠕變、靜動態(tài)問題的數(shù)值反演以及粘彈性阻尼器在抗震工程中的應用.pdf
- 混凝土外文翻譯---混凝土的收縮
- 土石壩瀝青混凝土心墻材料基本性能研究——蠕變和動力特性研究.pdf
評論
0/150
提交評論