機械畢業(yè)設計英文翻譯--具有非光滑特性的仿生推土機刮板對土壤阻力減小的影響_第1頁
已閱讀1頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  本科畢業(yè)設計(外文翻譯)</p><p>  具有非光滑特性的仿生推土機</p><p>  刮板對土壤阻力減小的影響</p><p>  Effects of non-smooth characteristics</p><p>  on bionic bulldozer blades in resistance<

2、;/p><p>  reduction against soil</p><p>  Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil</p><p><b>  Abstract</b><

3、/p><p>  The phenomenon of soil adhesion occurs widely when terrain machines and construction machines work; this adhesion increases their working resistance. Bionics is one of the most effective methods to red

4、uce resistance against soil. Several non-smooth convex form bulldozer blades were tested to study the effects of non-smooth characteristics on resistance reduction against soil. Under the same soil and test conditions, t

5、he draft forces of different non-smooth samples were obtained, and were lower t</p><p>  Author Keywords: Non-smooth characteristics; Bionic bulldozer blades; Resistance reduction</p><p>  Artic

6、le Outline</p><p>  1. Introduction </p><p>  2. Experimental details </p><p>  2.1. The bulldozer blade samples </p><p>  2.2. The tested soil </p><p>  2

7、.3. The equipments and conditions</p><p>  3. Results and discussions </p><p>  3.1. Effects of the number of the non-smooth convexes </p><p>  3.2. Effects of the base diameter of

8、the non-smooth convexes </p><p>  3.3. Effects of the distribution of the non-smooth convex </p><p>  3.4. Effects of the height of the non-smooth convexes </p><p>  3.5. Effects of

9、 experimental times on soil adhesion and forces</p><p>  4. Concluding remarks </p><p>  Acknowledgements </p><p>  References</p><p>  1. Introduction</p><p

10、>  The phenomenon of soil adhesion occurs widely when terrain machines and construction machines work; this adhesion increases their working resistance and energy consumption and decreases their qualities. Many method

11、s, such as materials modification, surface shape design, vibration, lubrication, electric-osmosis and magnetization, were adopted to reduce the soil adhesion force between soil and the surface of soil-engaging components

12、. Some research conducted found that polymeric materials and ename</p><p>  The problem of soil adhesion has been solved in some soil-burrowing animals such as dung beetle, ant, and pangolin. Some research h

13、as shown that some parts of their body surfaces were a kind of geometrical non-smooth structure. The non-smooth structure was one of reasons why soil-burrowing animals do not stick soil. Fig. 1 illustrates the non-s

14、mooth morphology of the head of dung beetle. Based on the research of the principles of the non-smooth surfaces of soil-burrowing animals in anti-adhesion</p><p>  Fig. 1. The non-smooth morphology of the he

15、ad of a dung beetle. </p><p>  View Within Article</p><p>  2. Experimental details</p><p>  2.1. The bulldozer blade samples</p><p>  The sample surfaces were convex-f

16、orm non-smooth surfaces and designed as curved surfaces, not plain ones. Fig. 2 shows a photograph of the bulldozer blade sample. The samples and the small convexes on them were cast together. The small convexes wer

17、e different in the number, base diameter, height, distribution form or distribution position. The non-smooth characteristic differences of the samples were shown in Table 1. The samples were 300 mm long, 150 mm wide

18、, and 150 mm high. The angle of the c</p><p>  Fig. 2. A photograph of a bulldozer blade sample used for tests. </p><p>  View Within Article</p><p>  Table 1. The non-smooth charac

19、teristic differences of the samples </p><p>  Full-size table (10K)</p><p>  View Within Article</p><p>  2.2. The tested soil</p><p>  The tested soil was a kind of bl

20、ack clay from Jilin Province, China. The moisture content was 28.25% (d.b.). The particle size distribution of the tested soil is listed in Table 2.</p><p>  Table 2. The particle size distribution of t

21、he tested soil, liquid limit (WL) and plastic limit (WP)</p><p>  Full-size table (2K)</p><p>  View Within Article</p><p>  2.3. The equipments and conditions</p><p> 

22、 The tests were run in a soil bin at Jilin University (Nanling Campus). The dimensions of the soil bin are 2.5 m long, 0.815 m wide and 0.515 m deep. The soil bin is driven by an electric motor through a gear box. In the

23、 experiment, the tested blade was mounted on a fixed frame structure which was above the soil bin. As the soil bin moved, the tested blade cut the soil. The draft forces were measured through two octagonal ring dynamomet

24、ers mounted between the tested blades and the fixed frame str</p><p>  Fig. 3. The experimental system. </p><p>  View Within Article</p><p>  3. Results and discussions</p>

25、<p>  3.1. Effects of the number of the non-smooth convexes</p><p>  Sample No. 1 (smooth), No. 2 (convex NUMBER=16), No. 3 (convex NUMBER=13) and No. 4 (convex NUMBER=19) were chosen as samples for tes

26、ts. The cut velocity was 0.031 m/s, the cut depth was 15 mm, the cut angle was 46° and the moisture content of the tested soil was 28.25%. The experimental results of the draft forces of the above four samples are s

27、hown in Fig. 4. It was obvious that the draft force of sample No. 3 was the lowest in this group. It was 23.9% lower than that of the smooth one. The dr</p><p>  Fig. 4. Effects of convex numbers on dra

28、ft force. </p><p>  View Within Article</p><p>  3.2. Effects of the base diameter of the non-smooth convexes</p><p>  Sample No. 1 (smooth), No. 2 (convex base DIAMETER=30 mm), No.

29、 5 (convex base DIAMETER=40 mm), No. 6 (convex base DIAMETER=20 mm) were selected as testing samples. The testing conditions were identical to those mentioned above. The mean tested draft forces of the above samples are

30、illustrated in Fig. 5. It shows that the draft force of sample No. 5 was the lowest in this group. It was 32.9% lower than that of the smooth one. The draft force of sample No. 6 was 20% lower than that of the smoot

31、h o</p><p>  Fig. 5. Effects of convex base diameter on draft force. </p><p>  View Within Article</p><p>  3.3. Effects of the distribution of the non-smooth convex</p><

32、p>  Under the same soil and testing conditions, the mean draft forces of sample No. 1 (smooth), No. 2 (convex base DIAMETER=30 mm), No. 7 (convex distribution was uniform, convex base diameter was normal) and No. 8 (c

33、onvex distribution was uniform, convex base DIAMETER=30 mm) were plotted in Fig. 6. It was found that the draft force of sample No. 7 was the lowest in this group. It was 13.9% lower than that of the smooth one. The

34、 draft force of sample No. 8 was 1.1% lower than that of the smooth one.</p><p>  Fig. 6. Effects of convex distribution on draft force. </p><p>  View Within Article</p><p>  3.4.

35、Effects of the height of the non-smooth convexes</p><p>  Effects of non-smooth convex height of samples were investigated under the same soil and testing conditions for sample No. 1 (smooth), No. 2 (convex

36、HEIGHT=4 mm), No. 9 (convex HEIGHT=8 mm) and No. 10 (convex HEIGHT=2 mm) samples. The mean draft forces of the above samples are illustrated in Fig. 7. It was found that the draft force of sample No. 9 was the lowes

37、t in this group. It was 19.3% lower than that of the smooth one. The draft force of sample No. 10 was 12.1% lower than that of the smoot</p><p>  Fig. 7. Effects of convex height on draft force. </p>

38、<p>  View Within Article</p><p>  3.5. Effects of experimental times on soil adhesion and forces</p><p>  Under the same soil and testing conditions as the above, sample Nos. 1 and 7 were

39、conducted eight times. After every experiment was conducted, the surfaces of the tested samples remained the same. The soil adhesion on the surfaces was observed, and the draft forces and the vertical forces were measure

40、d, as shown in Fig. 8 and Fig. 9, respectively. A lot of soil adhered to the surface of sample No. 1, and a minimum amount of soil adhered to the surface of sample No. 7. It was found from Fig. 6 an</p><p> 

41、 Fig. 8. Relationship between draft forces and experimental times for two samples. </p><p>  View Within Article</p><p>  Fig. 9. Relationship between vertical forces and experimental times for

42、two samples. </p><p>  View Within Article</p><p>  4. Concluding remarks</p><p>  The draft forces of the designed samples with non-smooth surface were lower than those of the desi

43、gned sample with smooth surface. It was found that the designed samples with non-smooth surface could reduce draft force in this work, that is, a properly designed non-smooth surface can minimize the cutting resistance o

44、f the curved surface bulldozer blade. </p><p>  The factors affecting the cutting resistance of bionic bulldozer blades included non-smooth convex numbers, convex base diameter, convex distribution and conve

45、x height. The sample with the largest convex base diameter had the smallest draft force.</p><p>  Under the same soil and the testing conditions, there was a lot of soil adhered to the surface of the smooth

46、sample, but the non-smooth sample had little. The draft force and the vertical force of the non-smooth sample were lower than that of the smooth one. The draft force of the smooth sample increased with the experimental t

47、imes increasing, but the draft force of the non-smooth sample varied smoothly.</p><p>  具有非光滑特性的仿生推土機刮板對土壤阻力減小的影響</p><p><b>  摘要</b></p><p>  當地面機械和施工機械工作時,土壤粘附現(xiàn)象經常發(fā)生。這種

48、粘附增加了機械工作阻力。仿生在減小土壤阻力方面是最有效的方法之一。為了研究非光滑特性在減小土壤阻力方面的影響,幾個具有非光凸起形式的推土機刮板已被測試。在同樣的土壤和測試條件下,又不同的非光滑樣本產生的比那些光滑樣本的要低。擁有最大的凸起底座直徑的樣本有最小的為切削阻力.了觀察土壤粘附和測試阻力,我們用光滑和非光滑樣本重復進行了實驗。非光滑樣本的表面粘附的土壤最少,而且根據光滑性也不同。光滑的樣本在土壤粘附和切削阻力方面也是不同的。&l

49、t;/p><p>  Luquan Ren, Zhiwu Han, Jianjiao Li and Jin Tong作者關鍵詞:非光滑特性;仿生推土機刮板;減小阻力 1.文章概要 1 導言 2 實驗細節(jié) 2.1 推土機刮板樣本 2.2 測試土壤 2.3 設備和條件 3結果和討論 3.1 非光滑凸起數量的影響3.2 非光滑凸起底座直徑的影響3.3 非光滑凸起分布的影響3.4 非光滑凸起高度的影響

50、3.5 試驗次數對于減小土壤粘附和阻力的影響 4 結束語 鳴謝 參考資料</p><p>  1 導言 當地面機器和施工機械工作時,土壤粘附現(xiàn)象經常發(fā)生。這種粘附增加了機械的工作阻力和能源消耗,降低了他們的工作質量。為了減少存在于土壤和混合土壤組成表面的土壤粘附力,很多方法,如材料改性,表面形狀設計,振動,潤滑,電氣滲透和磁化,已被采用。一些已實施的研究表明,聚合材料和瓷釉衣料有能力減少土壤粘附

51、[ 6 , 12 , 13 , 14和17 ] ,但聚合材料在對抗土壤阻力方面有著較差的耐磨性?;旌贤寥澜M成的表面形狀在減少土壤粘附和摩擦力方面發(fā)揮了至關重要的作用。為了減少耕地阻力,一種彗星型帶通道孔的模板已被研發(fā)出來[ 19 ] 。超聲振動和機械振動實驗已被實施,表明由于振動而形成的土壤粘附力和土壤摩擦阻力的減少 [ 16和18 ] 。阿拉亞和川西,謝弗等人報告說,被注入位于土壤和混合土壤組成表面的流動空氣,水和聚合物水溶液有潤滑作

52、用,也減少了混合土壤設備的切削阻力 1和15 ] 。為減少土壤粘附和滑動阻力,電滲法已被采納,但電滲透的長期接觸時間要求電滲透法的限制使用[ 2日和3 ] 。韓,張等人,研究了在犁形器具耕作阻力方面磁性所起的作用。他們報告說,背面附有永磁的犁鏵比</p><p>  圖1 非光滑形態(tài)率領的蜣螂</p><p>  2 實驗細節(jié) 2.1 :推土機刮板樣本 樣本表面是凸起形式的非

53、光滑表面并被設計成彎曲表面,并非平整表面。圖2顯示的照片為一個推土機刮板樣品。樣本和樣本上的小凸起被鑄造在一起。在數量,底座直徑,高度,分布形式和分布位置上這些小凸起均是不同的。表1表明了這些樣本的非光滑特性的不同。這些樣品又300毫米長, 150毫米寬, 150毫米高。在推土試驗中切割角度為52 °。刮板的彎曲半徑是105.2毫米,厚度為15毫米。 </p><p>  圖 2 一幀用于測試的推土機刮

54、板的照片。</p><p><b>  表1</b></p><p>  全尺寸表( 10,000 ) 鑒于在第 2.2 測試土壤 經測試的土壤是一種從吉林省采得的黑色粘土。水分含量為28.25 % ( d.b. ) 。表2列舉了測試土壤的粒度大小分布。 表2 測試土壤的粒度分布,液限(輪候冊)和塑性極限(可濕性粉劑)</p><p

55、>  2.3 設備和條件 試驗是在吉林大學(南嶺校區(qū))的土壤斌中運行的。土壤箱長2.5米,寬 0.815米和深0.515米。土壤斌是由電動機通過齒輪箱驅動的。在實驗中,被測試的刮板安裝在一個高于土壤斌的固定框架結構上。當土壤斌轉動時,被測刮板切割土壤。由安裝在被測刮板和固定框架之間的兩個八角環(huán)測功機測量切削阻力。這些切削阻力的信號由一個拉緊的度量器感測,然后被記錄在磁帶數據記錄器中。所記錄的數據由一個信號處理器加工處理。

56、切割的深度是15毫米,切割速率是0.031米/ s。所有樣本 相同條件下被測試,每個實驗重復3次。圖3展現(xiàn)了實驗系統(tǒng)。</p><p><b>  圖3 實驗系統(tǒng)</b></p><p>  3 結果和討論 3.1 非光滑凸起數量的影響 樣本1(光滑) ,樣本 2(凸數= 16 ) ,樣本 3(凸數= 13 )和樣本4(凸數= 19 )作為樣本進行測試。切

57、割速度0.031米/ s,切割深度為15毫米,切割角度為46 °和測試土壤的水分含量為28.25 % 。圖4表明了上面四個樣本的切削阻力的實驗結果。很明顯,這一組中樣本3的切削阻力是最低的。比光滑樣本低了23.9 %。樣本4的切削阻力比光滑樣本低了19.0 %。樣本1最高。</p><p>  圖4 非光滑凸起數量對切削阻力的影響</p><p>  3.2非光滑凸起底座直徑的影

58、響樣本號(光滑) ,樣本 2(= 30毫米) ,樣本5(凸 起底座直徑= 40毫米) ,樣本6(凸起底座直徑= 20毫米)被選定為測試樣本。測試條件與上述相同。圖5表明了上述樣本的平均測試力。這表明,樣本5的切削阻力在這一組中是最低的。壁光滑樣本低了32.9 %。樣本6的切削阻力比光滑樣本低了20 %。樣本1是最高的。</p><p>  圖5 非光滑凸起底座直徑的影響</p>

59、<p>  3.3 非光滑凸起分布的影響</p><p>  在相同的土壤和測試條件下,樣本1(光滑) ,樣本2(凸起底座直徑= 30毫米)樣本7(凸起分布均勻,凸起底座直徑為正常)和NO 8 (凸起分布均勻,凸起底座直徑 = 30毫米)的平均切削阻力被繪制在圖 6 。結果發(fā)現(xiàn),在這一組中樣本7的切削阻力是最低的。比光滑樣本低了13.9 % 。樣本8的切削阻力比光滑樣本低了1.1 %。樣本1最高。<

60、;/p><p>  圖6 非光滑凸起分布對切削阻力的影響</p><p>  3.4 非光滑凸起高度的影響</p><p>  我們用樣品1(光滑) ,樣本2(凸高度= 4毫米) 樣本9(凸高度= 8毫米)和樣本10 (凸高度= 2毫米)來測試非光滑凸起高度的影響。圖7表明了上述樣本的平切削阻力均。 結果發(fā)現(xiàn),在這一組中樣本9的切削阻力最低。比光滑樣本低了19.3 %

61、 。樣本10的切削阻力比光滑樣本低了12.1 %。樣本1是最高的。</p><p>  圖7 非光滑凸起高度對切削阻力的影響</p><p>  3.5試驗次數對于土壤粘附和阻力的影響 與上述情況相同的土壤和測試條件下,,樣品1和7被測試了 8次。在每次試驗實施之后,測試樣品的表面保持不變。正如圖 8和圖 9表明的,我們觀察到了表面的土壤粘附,測量到了切削阻力和垂直力。樣本1的表

62、面附著了很多土壤,樣本7的表面附著的土壤最少從圖6和圖7中我們可以發(fā)現(xiàn)樣本7的力切削阻力。由于樣本1表面的土壤附著,隨著實驗次數的增加切削阻力也增加,表明了累計附著的現(xiàn)象。然而,由于表面的土壤附著很少,樣本7的切削阻力由光滑性的變化而不同。</p><p>  圖8 切削阻力與兩實驗樣本的關系</p><p>  圖9 垂直力與兩實驗樣本的關系</p><p>

63、  4 結束語 在非光滑表面設計樣本的切削阻力比又光滑表面設計樣本的低。結果發(fā)現(xiàn),有非光滑表面的而設計樣本可以在工作中減小切削阻力,即妥善設計非光滑表面可以縮小推土機刮板彎曲表面的切割阻力。 影響推土機刮板切割阻力的因素包括非光滑表面凸起的數量,凸起底座直徑,凸起分布和凸起高度。擁有最大凸起底座直徑的樣本又最小的切削阻力。在相同的土壤和測試條件下光滑樣本的表面附著的土壤很多,而非光滑樣本的表面附著的很少。非光滑樣本的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論