外文翻譯--能源消耗、能源價(jià)格與經(jīng)濟(jì)增長之間的關(guān)系亞洲發(fā)展中國家的時(shí)間序列證據(jù)_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文3760字</b></p><p>  本科畢業(yè)論文外文翻譯</p><p>  外文題目: The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developin

2、g countries </p><p>  出 處: Energy Economics , 2000(22):615-625. </p><p>  作 者: John Asafu-Adjaye </p>&

3、lt;p><b>  原文:</b></p><p><b>  Abstract</b></p><p>  This paper estimates the causal relationships between energy consumption and income for India, Indonesia, the Phili

4、ppines and Thailand, using cointegration and error-correction modeling techniques. The results indicate that, in the short-run, unidirectional Granger causality runs from energy to income for India and Indonesia, while b

5、idirectional Granger causality runs from energy to income for Thailand and the Philippines. In the case of Thailand and the Philippines, energy, income and prices ar</p><p>  1. Introduction</p><p

6、>  In the past two decades numerous studies have examined the causal relation-ships between energy consumption and economic growth, with either income or employment used as a proxy for the latter. To date, the empiric

7、al findings have been mixed or conflicting. The seminal article on this topic was published in the late seventies by Kraft and Kraft (1978) who found evidence in favor of causality running from GNP to energy consumption

8、in the United States, using data for the period 1947-1974. Their f</p><p>  However, these findings have been subjected to empirical challenge. Akarca and Long (1980), Erol and Yu (1987a), Yu and Choi (1985)

9、, and Yu and Hwang (1984) found no causal relationships between income (peroxide by GNP) and energy consumption. On the causal relationship between energy consumption and employ-ment, Erol and Yu (1987b,1989),Yu and Jin

10、(1992),and Yu et al.(1988) found evidence in favor of neutrality of energy consumption with respect to employ-ment, referred to as the ‘neutrality hy</p><p>  One of the reasons for the disparate and often c

11、onflicting empirical findings on the relationship between energy consumption and economic growth lies in the variety of approaches and testing procedures employed in the analyses. Many of the earlier analyses employed si

12、mple log-linear models estimated by ordinary least squares (OLS) without any regard for the nature of the time series properties of the variables involved. However, as has recently been proven, most economic time series

13、are non-stat</p><p>  Following advances in time series analysis in the last decade, recent tests of the energy consumption economic growth relationship have employed bivariate causality procedures based on

14、Granger (1969) and Sims’(Sims,1972) tests. How-ever, these tests may fail to detect additional channels of causality and can also lead to conflicting results. For example, recently, Glasure and Lee (1997) tested for caus

15、ality between energy consumption and GDP for South Korea and Singapore using the standard Grang</p><p>  The direction of causation between energy consumption and economic growth has significant policy impli

16、cations. If, for example, there exists unidirectional Granger causality running from income to energy, it may be implied that energy conservation policies may be implemented with little adverse or no effects on economic

17、growth. In the case of negative causality running from employment to energy (Akarca and Long, 1979), total employment could rise if energy conservation policy were to be implemen</p><p>  This paper examines

18、 the energy income relationship for four energy-dependent Asian developing countries: India, Indonesia, the Philippines and Thailand. These countries were chosen because they represent energy-dependent LDCs which are poi

19、sed for take-off into a phase of industrialization. We depart from previous studies by considering a trivariate model (energy, income and prices) rather than the usual bivariate approach. This approach offers the opportu

20、nity to investigate other channels in the</p><p>  2. Economic and energy use profiles</p><p>  The four countries are heavily populated and have a combined total of 1.3 billion people (Table 1)

21、.Of the four, India is the least wealthy on a per capita income basis of comparison, with a per capita GDP of US$380(1996 dollars )which is the average for the South Asia region. The others have per capita incomes of ove

22、r US$1000 (see Table 1).All four countries recorded high annual growth rates in their manufacturing sectors in 1996, ranging from 10.5%for Indonesia to 5.6%for the Philippines. Of co</p><p>  Table 1 reports

23、 figures for per capita energy use and carbon dioxide emissions for the four countries in the sample. Energy use per capita is highest for Thailand in 1995 with 878 kg, followed by Indonesia with 442 kg per capita. India

24、 has the lowest per capita energy use with 260 kg. Carbon dioxide emissions per capita are also relatively high, ranging from 2.9 metric tons for Thailand to 0.9 metric tons for the Philippines. Most of the countries hav

25、e to rely on imports for their energy needs, </p><p><b>  Table 1</b></p><p>  Per capita energy use and carbon dioxide emissions (1995)a</p><p>  aSource:World Bank (19

26、98).</p><p>  The above figures show that Asian LDCs account for a significant proportion of world energy consumption. Given the recent phenomenal growth in awareness of and concern for global warming, an ex

27、amination of the energy income relationship has implications for energy policy in these countries. It is important to add that most of the studies referred to above have dealt with advanced or newly industrialized countr

28、ies (NICs) and it may be argued that the results are not applicable to countries at a d</p><p>  3. Methodology and data </p><p>  The modeling strategy adopted in this study was based on the no

29、w widely used Engle Granger methodology (see Granger and Newbold, 1974; Engle and Granger, 1981).The augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests of stationarity were used (Dickey and Fuller, 1981; Philli

30、ps and Perron, 1988). Following the unit root and cointegration tests, we estimated the following error correction model:</p><p>  Dyt=A21(L)Dyt-1+A22(L)Dent-1+A23(L)Dpt-1+λyECTt-1+u2t (1)</p>

31、<p>  Dent=A11(L)Dyt-1+A12(L)Dent-1+A13(L)Dpt-1+λenECTt-1+u1t (2)</p><p>  Dpt=A31(L)Dyt-1+A32(L)Dent-1+A32(L)Dpt-1+λpECTt-1+u3t (3)</p><p>  where [yt, ent, pt] are real

32、 income, energy consumption and prices, respectively; D is a difference operator; A i j(L) are polynomials in the lag operator L;ECT is the lagged error-correction term (s) derived from the long-run cointegrating relatio

33、n-ship; and the uits are error-correction terms assumed to be uncorrelated and random with mean zero. The coefficients,λi(i=en, y, p),of the ECT s represent the deviation of the dependent variables from the long-run equi

34、librium.</p><p>  Through the error-correction mechanism, the ECM opens up an additional causality channel which is overlooked by the standard Granger (1969) and Sims (1972) testing procedures. In the Grange

35、r sense a variable X causes another variable Y if the current value of Y can better be predicted by using past values of X than by not doing so. The Granger causality testing procedure involves testing the significance o

36、f the A i js conditional on the optimum lags1. Through the ECT, an error correction model o</p><p>  If the variables, yt, ent and pt are cointegrated then it is expected that at least one or all of the ECT

37、s should be significantly non-zero. Granger causality of the dependent variables is tested as follows:(1) by a simple t-test of the λis;(2) by a joint Wald F-test of the significance of the sum of the lags of each of the

38、 explanatory variables in turn; and (3) by a joint Wald F-test of the following interactive terms: Eq. (1)-(λy and A22), (λy and A23); Eq.(2)-(λen and A11), (λen and A13); an</p><p>  Annual time series data

39、 were utilized in this study. The series for India and Indonesia cover the period 1973-1995, while those for Thailand and the Philip-pines cover the period 1971-1995.The data were obtained from World Develop-ment Indicat

40、ors (WDI) 1998, published by the World Bank. The choice of the starting period was constrained by the availability of data on energy consumption. The precise definitions of the variables are as follows:</p><p&

41、gt;  en: commercial energy use in kilograms of oil equivalent per capita.</p><p>  y: real income, defined as GDP in constant 1987 prices in local currency units.</p><p>  p: prices. Since energ

42、y prices were not available, this variable was proxied by the consumer price index (CPI), 1987 = 100.</p><p>  4. Conclusion</p><p>  The purpose of this study was to test for Granger causality

43、between energy consumption and income for four Asian developing countries, including price as a third variable. Maximum likelihood procedures were used to analyze the time series properties of the variables and error-cor

44、rection models were estimated and used to test for the direction of Granger causality. From the test results, we conclude that unidirectional Granger causality runs from energy to income for India and Indonesia, while bi

45、</p><p>  The study finding of bidirectional Granger causality or feedback between energy consumption and income has a number of implications for policy analysts and forecasters. A high level of economic gro

46、wth leads to high level of energy demand and vice versa. In order not to adversely affect economic growth, energy conserva-tion policies that aim at curtailing energy use must rather find ways of reducing consumer demand

47、. Such a policy could be achieved through an appropriate mix of energy taxes and su</p><p>  The finding of bidirectional causality in two out of the four countries calls for caution in the use of single equ

48、ation regressions of income on energy for conduct-ing econometric forecasts. Our results suggest that in some cases, energy consump-tion, income and price are endogenous and therefore single equation forecasts of one or

49、the other could be misleading. In particular, any analysis which does not incorporate the error-correction terms is likely to give unreliable results. Our findings ar</p><p><b>  譯文:</b></p>

50、;<p>  能源消耗、能源價(jià)格與經(jīng)濟(jì)增長之間的關(guān)系:</p><p>  亞洲發(fā)展中國家的時(shí)間序列證據(jù)</p><p><b>  摘要</b></p><p>  本文利用協(xié)整和誤差校正模型技術(shù)估計(jì)了印度,印度尼西亞,菲律賓和泰國的能源消費(fèi)與收入之間的因果關(guān)系。結(jié)果表明,在短期內(nèi),印度和印度尼西亞的能源與收入存在單向格蘭杰因果

51、關(guān)系,而泰國和菲律賓的能源與收入存在雙向格蘭杰因果關(guān)系。在泰國和菲律賓,能源、收入和價(jià)格是相互因果關(guān)系。這項(xiàng)研究結(jié)果并不支持能源與收入是相互中立的觀點(diǎn),除了在2000年埃爾塞維亞科學(xué)B.V,短期內(nèi)全部權(quán)利被保留的案例中被認(rèn)為是中立的印度尼西亞和印度。</p><p><b>  一、引言</b></p><p>  在過去的二十年里眾多學(xué)者已經(jīng)審查了能源消費(fèi)與經(jīng)濟(jì)增長

52、之間的因果關(guān)系,無論是收入還是作為后者替代物的就業(yè)。迄今為止,實(shí)證結(jié)果有好壞也有沖突。卡夫關(guān)于這個(gè)主題的開創(chuàng)性文章在七十年代末被出版了,卡夫(1978)在美國使用1947年至1974年期間的數(shù)據(jù)發(fā)現(xiàn)了國民生產(chǎn)總值與能源消費(fèi)之間的因果關(guān)系的有利證據(jù)的人。他們的研究結(jié)果在后來被其他的研究人員所支持。例如,Akarca和Long(1979)使用美國在1973年至1978年期間每個(gè)月的數(shù)據(jù)發(fā)現(xiàn)了能源消費(fèi)與沒有被反饋的就業(yè)之間存在單向格蘭杰因果關(guān)

53、系。他們估計(jì)總就業(yè)與能源消費(fèi)之間的長期彈性系數(shù)是0.1356。</p><p>  然而,這些研究結(jié)果受到了實(shí)證的挑戰(zhàn)。Akarca和Long(1980),埃羅爾和Yu (1987a),Yu和Choi (1985),Yu和Hwang (1984)發(fā)現(xiàn)收入(國民生產(chǎn)總值的過氧化物)和能源消費(fèi)之間并不存在因果關(guān)系。在能源消費(fèi)與就業(yè)的因果關(guān)系中,埃羅爾和Yu (1987b,1989),Yu和Jin (1992),Yu等

54、人(1988)發(fā)現(xiàn)了能源消費(fèi)相對(duì)于就業(yè)的中立關(guān)系的有利證據(jù),簡稱為“中立假說”。</p><p>  能源消費(fèi)與經(jīng)濟(jì)增長關(guān)系的不同與往往相互沖突的實(shí)證研究結(jié)果的原因之一是在分析上采取了不同的方法和測試程序。許多較早的分析是采用簡單的對(duì)數(shù)線性模型估計(jì),通過沒有涉及任何有關(guān)時(shí)間序列特性的變量的最小二乘法(OLS)。不過,由于最近被證實(shí),大多數(shù)經(jīng)濟(jì)時(shí)間序列都是非固定形式的水平(see Granger and Newbo

55、ld, 1974)。因此,這種失敗可能會(huì)導(dǎo)致賬戶屬性變量之間的關(guān)系被誤導(dǎo)。</p><p>  繼過去十年里時(shí)間序列分析的進(jìn)步,在最近的測試中,基于格蘭杰(1969)和西姆斯(西姆斯,1972)的測試程序,能源消費(fèi)與經(jīng)濟(jì)增長之間的關(guān)系被認(rèn)為是二元因果關(guān)系。然而,這些測試可能無法檢測因果關(guān)系的其他渠道,也有可能會(huì)導(dǎo)致矛盾的結(jié)果。例如,最近,Glasure和Lee(1997)使用了標(biāo)準(zhǔn)的格蘭杰檢驗(yàn)以及協(xié)整和誤差校正模

56、型測試了韓國和新加坡的能源消費(fèi)與國內(nèi)生產(chǎn)總值之間的因果關(guān)系。他們利用協(xié)整和誤差校正模型發(fā)現(xiàn)這兩個(gè)國家之間的收入和能源存在雙向因果關(guān)系。但是,使用標(biāo)準(zhǔn)的格蘭杰因果關(guān)系檢測,他們發(fā)現(xiàn)韓國的國內(nèi)生產(chǎn)總值和能源之間沒有因果關(guān)系,新加坡的能源與國內(nèi)生產(chǎn)總值之間存在單向的因果關(guān)系。</p><p>  能源消耗與經(jīng)濟(jì)增長之間的因果關(guān)系方向有重要的政策影響。如果,打個(gè)比方,收入與能源他們之間存在單向格蘭杰因果關(guān)系,它可能意味著

57、節(jié)能政策的實(shí)施可能對(duì)經(jīng)濟(jì)增長存在很少或者根本沒有不利的影響。在就業(yè)與能源之間存在負(fù)因果關(guān)系的情下中(Akarca and Long, 1979),如果能源消費(fèi)政策被執(zhí)行,總的就業(yè)人數(shù)可能會(huì)上升。另一方面,如果能源消耗與收入存在單向因果關(guān)系,減少能源消耗可能會(huì)導(dǎo)致收入或者就業(yè)的下降。對(duì)于沒有任何方向的因果關(guān)系,所謂的“中立假說” (Yu and Jin, 1992),將意味著節(jié)能政策對(duì)經(jīng)濟(jì)增長沒有影響。</p><p&

58、gt;  本文探討了四個(gè)依賴能源的亞洲發(fā)展中國家的能源收入關(guān)系:印度,印度尼西亞,菲律賓和泰國。這些國家被選擇是因?yàn)樗麄兇砹艘蕾嚹茉?,?zhǔn)備起飛進(jìn)入工業(yè)化階段的最不發(fā)達(dá)國家。我們離開以前的研究,通過一個(gè)三元模型(能源,收入和價(jià)格)而不是通常的二元方法來考慮。這種方法提供了其他渠道來探討能源消耗與經(jīng)濟(jì)增長之間的因果聯(lián)系。</p><p>  二、經(jīng)濟(jì)和能源使用配置文件</p><p>  這

59、四個(gè)國家都是人口密集的國家,總共有1.3億人口(表1)。在這四個(gè)中,印度在基本的人均收入中財(cái)富是最少的,而美國的人均國民生產(chǎn)總值為380美元(1996美元)南亞地區(qū)的平均水平。其余的人均收入都超過1000美元(見表1)。這四個(gè)國家在1996年,在其制造行業(yè)紀(jì)錄了高的年增長率,從印度尼西亞的10.5%到菲律賓的5.6%。當(dāng)然,這個(gè)令人印象深刻的增長速度將在1997年下降,超越亞洲金融危機(jī)。為了維持高水平的經(jīng)濟(jì)產(chǎn)出,這些國家對(duì)能源資源做出高

60、需求。</p><p>  表1報(bào)告了這四個(gè)國家的人均能源使用量和二氧化碳排放量的抽樣調(diào)查。人均能源使用最高的是泰國在1995年的878千克,緊接著的是印度尼西亞,人均442千克。印度是人均能源使用最少的國家,為260千克。人均二氧化碳排放量也相對(duì)比較高,從泰國的2.9噸到菲律賓的0.9噸。大多數(shù)國家不得不依靠進(jìn)口來滿足他們的能源需求,除了印度尼西亞是燃料的凈出口國。印度是該地區(qū)能源最大的消費(fèi)國。印度的能源資源包

61、括主要的煤炭,并且據(jù)估計(jì)在1991年達(dá)到244萬公噸(結(jié)合組織,1993)。</p><p>  表1 人均能源使用量和二氧化碳排放量(1995)a</p><p>  a資料來源:世界銀行(1998)</p><p>  上述數(shù)據(jù)顯示了,在世界能源消費(fèi)中,亞洲最不發(fā)達(dá)的國家占有了重大的比例。鑒于最近對(duì)全球氣候變暖的認(rèn)識(shí)和關(guān)注的顯著增長,這些國家對(duì)能源收入關(guān)系的檢測

62、對(duì)能源政策造成了影響。重要的補(bǔ)充是,大多數(shù)涉及以上的研究都提到先進(jìn)的或者新的工業(yè)化國家(NICs),它可能會(huì)爭辯說,這個(gè)結(jié)果不適用于不同發(fā)展階段的國家。</p><p><b>  三、方法論和數(shù)據(jù)</b></p><p>  這個(gè)研究通過這個(gè)目前廣泛使用的恩格爾格蘭杰方法的模型策略(看格蘭杰和紐博爾德,1974;恩格爾和格蘭杰,1981)。狄基富勒(ADF)和菲利普

63、斯佩龍(PP)的平穩(wěn)性實(shí)驗(yàn)被廣泛的應(yīng)用(狄基和富勒,1981;菲利普斯和佩龍,1988)。經(jīng)過單位根和協(xié)助檢驗(yàn),我們估計(jì)誤差修正模型如下:</p><p>  Dyt=A21(L)Dyt-1+A22(L)Dent-1+A23(L)Dpt-1+λyECTt-1+u2t (1)</p><p>  Dent=A11(L)Dyt-1+A12(L)Dent-1+A13(L)Dpt

64、-1+λenECTt-1+u1t (2)</p><p>  Dpt=A31(L)Dyt-1+A32(L)Dent-1+A32(L)Dpt-1+λpECTt-1+u3t (3)</p><p>  其中[yt,ent,pt]分別為實(shí)際收入,能源消耗和價(jià)格;D是一個(gè)差分算子;Aij(L)是滯后算子L的多項(xiàng)式;ECT是來自長期協(xié)整關(guān)系的滯后誤差修正項(xiàng)(s);u

65、its是誤差修正項(xiàng)被假設(shè)為不相關(guān)性和隨機(jī)均值為零。λi(i=en,y,p),ECT里的這個(gè)系數(shù),代表了長期均衡中因變量的偏差。</p><p>  通過這個(gè)誤差機(jī)制,ECM開辟了一個(gè)被標(biāo)準(zhǔn)的格蘭杰(1969)和西姆斯(1972)測試程序所忽視的額外的因果關(guān)系渠道。格蘭杰覺得變量X導(dǎo)致另一個(gè)變量Y,如果Y的當(dāng)前值通過X的過去值預(yù)測比不這么做可能更好。格蘭杰因果關(guān)系檢驗(yàn)測試程序包括檢測了A i js在最佳滯后條件上的

66、重要性。通過ECT,一個(gè)誤差修正模型因果關(guān)系的替代測試(或因變量的弱外生性)。如果,舉個(gè)例子,λen是零,那么它意味著,在長期均衡的t-1時(shí)期,en t的變動(dòng)不會(huì)影響偏差的改變。同時(shí),如果λen是零,A11和A13也為零,這可能意味著收入和價(jià)格與能源消耗之間并不是格蘭杰原因。在ECM中,T檢驗(yàn)和沃爾德F檢驗(yàn)的非顯著性將意味著因變量的弱外源性。</p><p>  如果這些變量,yt, ent和pt是協(xié)整關(guān)系,那么

67、預(yù)計(jì)ECM中至少有一個(gè)或者全部都應(yīng)該顯示為非零。因變量的格蘭杰因果關(guān)系的檢測如下:(1)λis的簡單T檢驗(yàn);(2)反過來通過聯(lián)合沃爾德的F的顯著性檢驗(yàn)來對(duì)每個(gè)解釋變量的滯后性總和進(jìn)行檢驗(yàn);(3)通過聯(lián)合沃爾德的F檢驗(yàn)對(duì)下面的相互影響項(xiàng)進(jìn)行檢驗(yàn):Eq. (1)-(λy and A22), (λy and A23); Eq.(2)-(λen and A11), (λen and A13); and Eq. (3)-(λp and A31),

68、 (λp and A32)。</p><p>  年度時(shí)間序列數(shù)據(jù)在這項(xiàng)研究中被引用。印度和印度尼西亞涵蓋了1973年至1995年期間的序列數(shù)據(jù),而泰國和菲律賓涵蓋了1971年至1995年期間的序列數(shù)據(jù)。這些數(shù)據(jù)來自于1988年世界銀行出版的世界發(fā)展指標(biāo)(WDI)。開始時(shí)期的選擇是受制于能源消耗數(shù)據(jù)的可利用性。這個(gè)變量的確切定義為:</p><p>  en: 人均商業(yè)的石油能源的公斤使用

69、量。</p><p>  y: 實(shí)際收入,被定義為國內(nèi)生產(chǎn)總值按當(dāng)?shù)刎泿艈挝挥?jì)算的常量。</p><p>  p: 價(jià)格。由于能源價(jià)格沒有可用性,這個(gè)變量是由消費(fèi)價(jià)格指數(shù)(CPI)代理的。</p><p><b>  四、結(jié)論</b></p><p>  本研究的目的是為了檢驗(yàn)四個(gè)亞洲發(fā)展中國家之間的能源消耗與收入之間的

70、格蘭杰因果關(guān)系,包括作為第三個(gè)變量的價(jià)格。最大似然值是用來分析這個(gè)變量的時(shí)間序列特性和誤差校正模型的估計(jì)的程序,也是用來檢驗(yàn)格蘭杰因果關(guān)系的方向。從檢驗(yàn)的結(jié)果來看,我們可以得出這樣的結(jié)論,印度和印度尼西亞的能源與收入是單向格蘭杰因果關(guān)系,而泰國和菲律賓的能源與收入是雙向格蘭杰因果關(guān)系。從長遠(yuǎn)來看,印度和印度尼西亞的能源與價(jià)格對(duì)收入存在單向格蘭杰因果關(guān)系。然而,在泰國和菲律賓,能源,收入和價(jià)格是相互因果關(guān)系的。在這個(gè)關(guān)系鏈中,價(jià)格影響相對(duì)

71、是不太重要的。在一般情況下,這個(gè)研究結(jié)果并不支持能源與收入之間是相互中立的觀點(diǎn),除了印度尼西亞和印度在短期內(nèi)的觀察是中立的。</p><p>  雙向格蘭杰因果關(guān)系和能源消耗與收入之間的反饋的研究發(fā)現(xiàn)對(duì)政策分析和預(yù)測者有一定的影響。一個(gè)高水平的經(jīng)濟(jì)增長導(dǎo)致高水平的能源需求,反之亦然。為了不造經(jīng)濟(jì)增長的不利影響,旨在削減能源使用的能源保護(hù)政策必須找到減少消費(fèi)需求的方法。這種政策可以通過適當(dāng)?shù)哪茉炊惡脱a(bǔ)貼相結(jié)合來實(shí)現(xiàn)

72、。同時(shí),必須努力鼓勵(lì)業(yè)界采用最大限度減少污染的技術(shù)。</p><p>  四個(gè)國家中的兩個(gè)的收入對(duì)能源的雙向因果關(guān)系的發(fā)現(xiàn)被慎重要求使用計(jì)量經(jīng)濟(jì)學(xué)的單一回歸方程來預(yù)測。我們的研究結(jié)果表明,在某些情況下,能源消耗,收入和價(jià)格是內(nèi)生變量,因此,對(duì)一個(gè)或者另一個(gè)的單一回歸預(yù)測可能存在誤導(dǎo)。特別是,任何不納入這個(gè)誤差修正項(xiàng)的分析都有可能給出不可靠的結(jié)果。我們的研究結(jié)果與預(yù)期相符,即能源依賴型經(jīng)濟(jì)體相對(duì)于能源沖擊型更脆弱。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論