版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 端銑削自適應(yīng)切削力的模糊控制策略</p><p> U. Zuperl ?, F. Cus, M. Milfelner</p><p> Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia</p><p>
2、;<b> 摘要</b></p><p> 這篇文章討論了在高速端銑削時的切削力的模糊適應(yīng)的控制策略。這項研究是關(guān)于運用標準計算機數(shù)字控制裝置來憂化金屬切削過程的整合自適應(yīng)性控制。它被設(shè)計成服務(wù)于允許在刀具上對長時間復雜成形加工很有益的切削力時適應(yīng)性地使切削速度最大化的控制.目的是產(chǎn)生一個可靠的,強有力的人工神經(jīng)控制器協(xié)助自適應(yīng)協(xié)調(diào)切削速度來防止過分的刀具磨損,即刀具的磨損量和保持高的排
3、屑率。許多的仿真和實驗用來肯定這個體系的功效。</p><p> 關(guān)鍵詞:端銑;自適應(yīng)力控制;模糊</p><p><b> 1.諸論</b></p><p> 一個CNC系統(tǒng)遺留下來的缺點是加工參數(shù),如進給速度,切削速度和深度,被離線編程。加工參數(shù)通常在加工前根據(jù)編程者的經(jīng)驗和加工手冊被選擇。為了防止損害和避免加工失敗。運行的條件通常被
4、設(shè)置的很保守。結(jié)果是,有很多的CNC系統(tǒng)運行于遠遠低于憂化標準運行條件下效率差。即使加工參數(shù)在離線時通過憂化計算法憂化了,在加工過程中它們也不能被協(xié)調(diào)起來。為了確保加工產(chǎn)品的質(zhì)量,為了降低加工成本和提高加工的效率,協(xié)調(diào)實時加工的參數(shù)來符合憂化的加工標準是有必要的。由此,提供在線運行下協(xié)調(diào)的自適應(yīng)控制,被有興趣地研究起來。在我們的自適應(yīng)控制系統(tǒng)中,不管是在切削條件下變化時,進給速度總是在線協(xié)調(diào)下來保持一個常數(shù)切削力。在這篇文章中,一個簡單
5、的模糊控制策略被在智能系統(tǒng)和一些運用模糊控制策略的實驗性的仿真中發(fā)展起來。結(jié)果證明這個目標系統(tǒng)有效地控制在一般端銑削條件下的峰值切削力。力的控制運算法則已經(jīng)被眾多的研究者開發(fā)和評估了。被固定的增加比例積分控制器,先前是為銑削現(xiàn)為了一個可協(xié)調(diào)的增加比例積分控制器,在那里控制器根據(jù)變化的切削條件被協(xié)調(diào)。完整的自適應(yīng)參考模擬,自適應(yīng)控制裝置方法最初是被Cusand Balic研究的。這</p><p> 2.自適應(yīng)模
6、糊控制器結(jié)構(gòu)</p><p> 一個新的在線控制計劃,這個計劃被稱作自適應(yīng)模糊控制,是通過使用模糊集合論開發(fā)的。這個方法的基本思想是合并人操作者在控制設(shè)計中的經(jīng)驗。這個控制策略是用公式表達成許多的規(guī)則,這些規(guī)則手工執(zhí)行很簡單但是對于用一般的數(shù)學運算法則來實現(xiàn)很困難。基于這個新的控制策略,很多復雜的過程能夠標準方法似的更容易地和更精確地被控制。模糊控制的目標是保持金屬切除率,能可能的高和保持切削力盡可能地接近一個
7、給定的參照值。此外,計算任務(wù)和時間可能就像金典或者現(xiàn)代控制理論那樣被減少。示意性的控制規(guī)則通過使用真實的實驗數(shù)據(jù)被構(gòu)造出。模糊自適應(yīng)控制確保了連續(xù)地憂化進給速度的控制。這個控制是自動被協(xié)調(diào)到每一個特殊的切削情況。當軸的負載低的時候,系統(tǒng)增加切削進給到或者超過預先編程的進給速度,直接導致循環(huán)周期和產(chǎn)品成本相當大的減少。當軸的負載高時,進給速度就被降低,以保護工作母機不損害和損壞。當系統(tǒng)偵測到極端的切削力時,它會自動停機來保護切削工具。它減
8、少了一定的操作者的監(jiān)督管理。在線銑削憂化的步驟次序如下:</p><p> 1.預編程進給速度被送到銑床CNC控制器。</p><p> 2.測量出的切削力被送到模糊控制器。</p><p> 3.模糊控制器使用輸入的規(guī)則來找到(協(xié)調(diào))憂化的進給速度,將它送回到機器。</p><p> 4.第一步和第三步被重復直到加工結(jié)束。</
9、p><p> 自適應(yīng)切削力控制器協(xié)調(diào)進給速度是基于一個測量出的峰值切削力通過布置一個進給速度超過CNC控制器在四軸上的百分比, 真實的切削速度是超過部分和已編程的進給速度。如果進給速度憂化模擬是完美的,憂化的進給速度也將總是等于參照的峰值力。在這種情況下,超出部分的正確率將是100%。為了控制器調(diào)整峰值力,力的信息必須在每個采樣時間對控制運算法則是有用的。一個探測軟件被用來提供這些信息。</p>&l
10、t;p> 2.1一個模糊控制器的結(jié)構(gòu)</p><p> 在模糊過程控制中,專門技術(shù)被壓縮成一個根據(jù)關(guān)于人操作標準和輸入輸出關(guān)系的系統(tǒng)。運算法則是基于操作者的知識但考慮到過程編輯通過改寫誤差,它也包括了控制理論。 從而,控制器有輸入切削力誤差F和第一次不同誤差2F,輸出變化的進給速度f。模糊控制變化和規(guī)則創(chuàng)基礎(chǔ)創(chuàng)建從專家操作者那帶走。切削力誤差和第一次誤差的差異被計算,在每一個采樣時間k,如_F(k) =
11、 Fref ?F(k)和_2F(k) =_F(k)?_F(k?1),這里F是測量的切削力,F(xiàn)ref是力的設(shè)定點。</p><p><b> 3.CNC加工模擬</b></p><p> 在進行實驗測試之前,一個CNC加工模擬模擬器被用來估算控制者的設(shè)計。</p><p> 過程模擬由人工神經(jīng)力模擬和進給驅(qū)動模擬。人工神經(jīng)力模擬基于切削條件
12、和已描述的形狀切削估算切削力。進給驅(qū)動模擬模擬機器對已指定進給速度變化的反應(yīng)。進給驅(qū)動模擬通過檢查步的已指定速度的改變被決定。最好的模擬被發(fā)現(xiàn)是一個頻率為3Hz和節(jié)拍時間為0.4s的二級命令系統(tǒng)。對比實驗和仿真從7到22mm/s圖3顯示的速度步調(diào)改變結(jié)果。進給驅(qū)動和人工神經(jīng)力模擬被結(jié)合形成CNC加工模擬。模擬輸入是已指定的進給速度,輸出是X、Y合成的切削力。切削形狀在人工神經(jīng)力模擬中被定義。模擬器通過比較實驗和模擬仿真結(jié)果被修改。伴隨進
13、給速度改變的各種切削被確定。從0.05到2mm/tooth每一步改變,實驗和仿真合力展現(xiàn)如圖4。實驗結(jié)果與在平均和峰值力方面模擬結(jié)果聯(lián)系的很好。明顯的差異可能是因為人工神經(jīng)模擬和沒有模擬的系統(tǒng)編輯器的錯誤。</p><p><b> 3.1切削力模擬</b></p><p> 為明白在線切削力模擬,基于流行的反饋原理,一個標準BP人工神經(jīng)網(wǎng)絡(luò)(NN)被提出在預備實
14、驗期間,它被證明是很有可能直接從實驗加工數(shù)據(jù)提取力模擬。它被用來模擬切削過程。用來模擬的NN需要為進給速度f,切削速度vc 切削軸向深度AD 和切削徑向深度RD 4個輸入人工神經(jīng)元。NN的輸出是切削力的要素,因此需要兩個輸出神經(jīng)元。帶優(yōu)化參數(shù)使用的NN詳細的布局和神經(jīng)元的數(shù)學原理如圖5所示。最好的NN配置包含5,3和7在隱藏層隱藏的神經(jīng)元。</p><p> 3.2神經(jīng)網(wǎng)絡(luò)的布局和其模擬問題的自適應(yīng)性</
15、p><p> 布局的效果也通過考慮不同的情況而被研究。通過改變在隱藏層的人工神經(jīng)元的個數(shù)來改變布局。為估計個別與神經(jīng)網(wǎng)絡(luò)性能有關(guān)程序參數(shù)的效果,40個不同網(wǎng)絡(luò)被訓練,測試和分析。網(wǎng)絡(luò)性能使用ETstMax, ETst, ETrn, and ETrnMax四個不同標準和程序周期數(shù)來估計。在輸入輸出層的神經(jīng)元數(shù)通過輸入輸出參數(shù)的數(shù)量來決定。由結(jié)果得到的如下所述結(jié)論:</p><p> ? 0.
16、3比率給出可接受的預期誤差而掌握比率必須在0.01到0.2之間來最小化程序周期數(shù)。</p><p> ?為了最小化判斷誤差,比率在0.001到0.005之間是好的。然而,如果程序周期數(shù)也是最小化,掌握比率應(yīng)該不超過0.004 </p><p> ?最佳的隱蔽層節(jié)點數(shù)是3或6.節(jié)點數(shù)在2到12或不是3或6的網(wǎng)絡(luò)也表現(xiàn)的好但是導致更高的程序周</p><p><
17、;b> 期。</b></p><p> ?用正弦函數(shù)的網(wǎng)絡(luò)需要最低的程序周期數(shù),緊跟的是正切函數(shù)而用雙曲線切線那些需要更高的程序周期。</p><p> 4.數(shù)據(jù)獲得系統(tǒng)和實驗設(shè)備</p><p> 用在這個獲取系統(tǒng)的數(shù)據(jù)獲取設(shè)備由測力計,固定模塊,硬件和軟件如圖1所示。切削力使用安在工件和工作臺壓電測力計測量。當?shù)毒哒谇邢鞴ぜr,力將通
18、過刀具施加到測力計。在測力計上的壓電石英產(chǎn)生形變,電荷將會產(chǎn)生。電荷然后通過連接電纜傳遞到多通道電荷放大器。電荷然后使用多通路放大器放大。在多通路電放大器中,不同參數(shù)能被調(diào)整以完成必需解決的。在放大器的輸出端,電壓將對應(yīng)于取決于設(shè)置在放大器中參數(shù)的力。接口硬件模塊由連接設(shè)計塊,模擬信號協(xié)調(diào)模塊和一個16通道A/D接口板(PC-MIO-16E-4)。在A/D板里,模擬信號將轉(zhuǎn)變成數(shù)了信號,以使LabVIEW軟件能讀和接收數(shù)據(jù)。用LabVI
19、EW電壓將轉(zhuǎn)變成在X,Y和Z方向的力。用這個程序,三個軸向力要素能同時獲得,并能為分析力的變化而顯示在屏幕上。選R216-16B20-040型直徑16mm10度螺旋角帶雙刃可互換球狀端立銑刀來加工。前角12度R216-1603 M-M型立銑刀被選。立銑刀的材料是P10-P20涂上TiC/TiN ,GC4040。冷卻液RENUS FFM用來冷卻。模糊控制被智能操縱器模塊(Labview),修正進給速度被遞到力控制軟件</p>
20、<p> 5.模擬和模糊控制銑實驗</p><p> 為檢查自適應(yīng)模糊控制策略的穩(wěn)定性和耐用度,通過用Simulink and Labview fuzzy Toolset模擬來檢查系統(tǒng)。然后,通過在一個CNC銑床的對Ck45和Ck45鋼工件改變切削深度的不同實驗來改變系統(tǒng)(如圖6)R216-16B20-040型直徑16mm10度螺旋角帶雙刃可互換球狀端立銑刀被選來進行實驗。切削條件為:銑削寬度RD
21、 = 3 mm,銑削深度AD = 2mm和切削速度vc = 80m/min.模糊控制的參數(shù)相同于對傳統(tǒng)系統(tǒng)性能的實驗。用模糊控制結(jié)構(gòu)如圖1,憂化進給速度,想要的切削力是[Fref] = 280 N,預編程的進給是0.05mm/teech,允許調(diào)整率為[0–150%]。當切削深度改變時,圖7是切削力和進給速度的反映。它顯示出實驗結(jié)果,結(jié)果中進給速度在線調(diào)整來保持切削力在最大想要值。模擬控制器響應(yīng)在軸向深度一步改變,顯示如圖8.模擬代表了一
22、個16mm,兩面銑刀,在2000rpm時,正遇到一步從軸向深度從3到4.2mm的改變。這步改變發(fā)生在2s,在0.5s內(nèi)控制器返回峰值成參考峰值力在這項研究中模糊控制器的穩(wěn)定性通過模擬被估算。用在過程增益中小和大步改</p><p><b> 6.結(jié)果和討論</b></p><p> 在用不變進給速度(常用切削,如圖7a)的第一次實驗中,MRR僅僅在最后一步時達到它
23、的固有值。然而,在第二次測試中,使用模糊控制加工相同的工件,平均完成的MRR很接近固有的MRR值。對比圖7a和b,人工神經(jīng)控制銑削系的在切削力是保持在240N左右,自適應(yīng)銑削系統(tǒng)的進給速度接近于傳統(tǒng)CNC銑削系統(tǒng)從C點到D點。從A點到C點,自適應(yīng)銑削系統(tǒng)的進給速度高于正統(tǒng)CNC系統(tǒng),因此 ,自適應(yīng)銑削系統(tǒng)銑削效率提高了。實驗結(jié)果顯示出MRR可能提高高到27%。相比于大多數(shù)的現(xiàn)有端銑削控制系統(tǒng),目標模糊控制系統(tǒng)有下列優(yōu)勢:</p&g
24、t;<p><b> 1.多參數(shù)調(diào)整。</b></p><p> 2.對工件形狀、刀具形狀和工件材料的改變敏感;</p><p> 3.合算和容易實現(xiàn);</p><p> 4.數(shù)學建模方便模擬仿真結(jié)果顯示使用設(shè)計的模糊控制器的銑削過程耐用度、穩(wěn)定性,比標準的控制器有更高加工效率。實驗顯示模糊控制器比傳統(tǒng)控制器有重大的優(yōu)勢。
25、主要的優(yōu)勢是一個控制器快速響應(yīng)復雜傳感輸入而在傳統(tǒng)控制器上老的控制運算法則下運行速度受限制。當前研究顯示模糊控制比傳統(tǒng)控制器有很大的優(yōu)勢。</p><p> 第一個優(yōu)勢是一個模糊控制器能有效率地利用在計劃和執(zhí)行一個控制動作方面比一個工人更巨大的感官信息。</p><p> 第二個優(yōu)勢是模糊控制器快速響應(yīng)復雜的傳感輸入而在傳統(tǒng)控制器的傳統(tǒng)控制法則下的執(zhí)行速度受到嚴格的限制。</p&
26、gt;<p><b> 7.結(jié)論</b></p><p> 這次投稿的目的是為介紹一輔助自適應(yīng)調(diào)整進給速度來防止過度刀具磨損,刀具破損和保持高的金屬去除率的可靠而耐用的模糊力控制器。帶自適應(yīng)控制策略的智能銑削實驗結(jié)果表明模糊控制器有高的耐用度和完全穩(wěn)定性。方法成功應(yīng)用于實驗Heller銑削加工中。目標在線最佳切削條件決定系統(tǒng)在這篇文章中應(yīng)用于球端銑削,但顯然此系統(tǒng)也可延伸到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--端銑削自適應(yīng)切削力的模糊控制策略 中文版
- 外文翻譯--端銑削自適應(yīng)切削力的模糊控制策略 英文版
- 端銑削自適應(yīng)切削力的模糊控制策略【pdf+word】【中文4500字】機械類外文翻譯
- 端銑削自適應(yīng)切削力的模糊控制策略【pdf+word】【中文4500字】機械類外文翻譯
- 外文翻譯=端銑削自適應(yīng)切削力的模糊控制策略(有出處)708--中英文翻譯
- 外文翻譯=端銑削自適應(yīng)切削力的模糊控制策略(有出處)708--中英文翻譯
- 端銑削自適應(yīng)切削力的模糊控制策略(有出處)708--中英文翻譯
- 端銑削自適應(yīng)切削力的模糊控制策略(有出處)708--中英文翻譯.doc
- 端銑削自適應(yīng)切削力的模糊控制策略(有出處)708--中英文翻譯.doc
- [機械模具數(shù)控自動化專業(yè)畢業(yè)設(shè)計外文文獻及翻譯]【期刊】端銑削自適應(yīng)切削力的模糊控制策略-中文翻譯
- 切削力自適應(yīng)控制研究.pdf
- 外文翻譯--在鉆孔中偏心距對切削力的影響 中文版
- 外文翻譯--汽車電子節(jié)氣門的自適應(yīng)控制 中文版
- 外文翻譯--制冷壓縮機速度的模糊控制 中文版
- 數(shù)控銑削切削力預測的研究.pdf
- 高速銑削切削力與溫度的分析.pdf
- 外文翻譯中文版
- 難加工材料高速銑削切削力研究.pdf
- 外文翻譯--高速金屬切削立銑刀涂層的研究 中文版
- 紡織[外文翻譯]中文版
評論
0/150
提交評論