版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 外文文獻(xiàn):</b></p><p> GRAPHICAL-BASED MULTISTAGE SCHEDULING METHOD FOR RC BUILDINGS</p><p> Y. C. HUANG</p><p> Department of Construction Management, Hwa H
2、sia Institute of Technology and Commerce, 111 Hwa Hsin Street,Chung Ho City, Taipei Hsien, Taiwan, Republic of China</p><p> Received 13 February 2004; accepted 4 March 2005</p><p> In Taiwan,
3、 contractors are becoming specialized in certain types of construction in an increasingly competitive environment and this specialization requires some scheduling models to provide better scheduling results for each type
4、 of construction. A new practical method, Graphical-Based Multistage Scheduling Method (GMSM),for scheduling RC building superstructures is presented herein. From the analysis of characteristics and construction custom o
5、f RC buildings, four constraints, (a) down–up cons</p><p> Keywords: Multistage scheduling, repetitive project, RC building, GMSM</p><p> Introduction</p><p> In Taiwan, contract
6、ors are becoming specialized in certain types of construction in an increasingly competitive environment and this specialization requires some scheduling models to provide a better scheduling for each type of constructio
7、n. The majority of high-rise buildings located in urban areas in Taiwan are RC structures. It is deemed crucial for high-rise buildings that a scheduling model for this type of construction can not only increase profits
8、but also reduce the impact on urban traff</p><p> Of the high-rise buildings constructed to date, the network planning technique has been commonly adopted in scheduling. The Critical Path Method (CPM) is th
9、e most popular one; for instance, prevalent scheduling software such as MS Project, Primavera Project Planner, etc., were developed based on CPM. However, assuming that all activities are independent, the CPM does not ta
10、ke into consideration the resource reuse where there is repetition of identical activities on every floor.</p><p> O’Brien (1975) proposed that high-rise building be divided into two categories: (1) non-rep
11、etitive works, such as earthworks, foundations, and non-typical floor plans; and (2) repetitive works, such as superstructures with standard floor designs. In the former category, CPM is utilized to execute scheduling. F
12、or the latter, a scheduling model suitable for repetitive construction has to be developed. Reda (1990) and Cole (1991) also demonstrated the necessity of scheduling for repetitive projects</p><p> This stu
13、dy, according to O’Brien’s suggestion, is to develop a graphical-based scheduling method applicable to repetitive projects of RC building superstructures so that the most popularly practiced construction method in Taiwan
14、, sitecast concrete structures with wooden forms, may be in line with it. </p><p> Literature reviews</p><p> The theoretical scheduling approach of repetitive projects is based on the princip
15、le of ‘Assembly Line Balance’, in which there are two premises: (1) work continuity for each activity from one unit to the next, and (2) appropriateness for the lower-bound limit of construction intervals between adjacen
16、t activities within the same unit. The principal methods for repetitive scheduling are the Line of Balance (LOB) method and the Linear Scheduling Method (LSM). The difference between them is that th</p><p>
17、 In recent decades, for the scheduling of repetitive projects, a number of methodologies have been developed, such as linear programming (Handa and Barcia, 1986; Reda, 1990 (RPM); Russell and Caselton, 1998), dynamic pro
18、gramming (Selinger, 1980; Russell and Caselton, 1988; Eldin and Senouci, 1994; Senouc and Eldin, 1996; El-Rayes and Moselhi, 2001), simulation (Halpin, 1977 (CYCLONE); Ashley, 1980; Kavanagh, 1985 (SIREN); AbouRizk and H
19、alpin, 1990; Lutz et al., 1994; Chehayeb and AbouRizk, 1998; </p><p> The common assumption of the above-mentioned studies is the work continuity for each activity from one unit to the next, or the work con
20、tinuity on partial units. Wang and Huang (1998) presented a multistage linear scheduling (MLS) method to tackle the problem of adjacent activities of the same unit restricted by an upper limit of the interval time. It ha
21、s been found from the MLS method that the interval between the start times for adjacent units at least equals the longest duration among all act</p><p> Moreover, some scheduling methods for high-rise build
22、ings have been presented. O’Brien (1975) presented the Vertical Production Method (VPM), adopting the concept of an assembly line with a predetermined progress rate of each activity. A graphical technique was incorporate
23、d to inspect each activity with regard to whether the construction logic is achieved or not. Thabet and Beliveau (1994) analyzed the start time of each activity within a unit, and established a Horizontal and Vertical Lo
24、gic Sch</p><p> Nevertheless, as these models satisfy the assumption of continuous work of identical activities on (partial) floors, they are applicable to steel structures or SRC structures. The purpose of
25、 this paper is to present a scheduling model for RC multistory buildings. The proposed model, a graphical-based method, is based on the concept of resource reuse with plain mathematical means to determine the start time
26、for each floor of RC buildings. Details of assumptions and formulation of the GMSM are pre</p><p> Assumptions and constraints </p><p> Assumptions:</p><p> Through analysis of t
27、he characteristics and custom of constructing RC building superstructures, underlying assumptions on which to base the GMSM were induced and are summarized as follows: </p><p> (1) work continuity of each a
28、ctivity is maintained within each floor;</p><p> (2) starting any activity on any floors must wait for the completion of the same activity on the previous floors; </p><p> (3) duration for eac
29、h activity on different floors shall be constant; and </p><p> (4) the construction method shall remain the same for each floor. </p><p> Since both form workers and rebar workers are two main
30、 categories of labor in the construction of RC building superstructures in Taiwan, maintaining work continuity within each floor can reduce idle time. Therefore, the first assumption is in accordance with the constructio
31、n custom of RC buildings. The second assumption satisfies the resource reuse. Since the construction method of RC buildings consists of some well-defined activities, the duration for identical activities performed by ski
32、lled f</p><p> Work flow of a floor </p><p> From the fourth assumption, one must ensure what activities in the work flow of floors are, and use the work flow as a basis for deriving the GMSM.
33、 The construction method of RC building superstructures in Taiwan uses sitecast concrete structures with wooden forms. The work flow of a floor for RC buildings consists of nine activities, which are shown in Figure 1(a)
34、. At the same time, it is assumed, for the work flow, that the duration for non-critical-path activities should not exceed that of cr</p><p> The work flow of a floor for RC buildings can be simplified into
35、 a seven-step construction sequence: (1) layout of structure members; (2) setting column reinforcements; (3) erecting wall and column forms, and setting wall reinforcements; (4) erecting beam forms and shores; (5) erecti
36、ng slab forms, stairs forms and shores; (6) setting beams, slabs and stairs reinforcements; and (7) pouring concrete, as shown in Figure 1(b). In Figure 1, the symbols Wi and Di used in this study represent each acti<
37、/p><p> Because both the activities of layout of structure members and pouring concrete (requiring more professional skill and pump cars though) take shorter durations than do others, contractors usually subco
38、ntract these two jobs to reduce costs. The rest of the activities are performed by form and rebar workers. </p><p> Constraint for scheduling </p><p> From the work flow as shown in Figure 1 f
39、or the scheduling process of RC building superstructures, it is required to consider not only the input of the resource (e.g. the least labor combination) and constructability (the least work space) for each activity on
40、a typical floor, but also three factors: (1) down–up construction, (2) regulations of building inspections, and (3) form reuse, of which all affect RC building construction. Furthermore, these factors can be transformed
41、into restrictive fo</p><p> Constraint for down–up construction </p><p> In general, an RC building superstructure is constructed by repetitively using the same construction method for each fl
42、oor. It is consistent with the definition of a repetitive project (Reda, 1990), and can only be constructed in sequence from the lower level of floors. In addition, the start of layout of structure members for a floor mu
43、st be delayed 1 day after pouring the concrete for the preceding floor. Since the construction of adjacent floors cannot be both undertaken at the same time, the</p><p> Due to the characteristics of down–u
44、p construction for the RC building superstructures, the layout of structure members activity on the j=1st floor, for instance, has to start after the completion of concrete pouring for the jth floor. The graphic represen
45、tation of this characteristic is shown in Figure 2(a), and its restrictive formula is expressed as equation (1): </p><p><b> (1)</b></p><p> Since the work continuity for each acti
46、vity within a floor is maintained according to the first assumption, F7j can be expressed as Sj1+Dk, with which equation (1) then can be rewritten as a restrictive formula of the start time with respect to the activity 1
47、 for each floor, as shown in equation (2): </p><p><b> (2)</b></p><p> The significance of equation (2) is that the interval between activities of layout of structure members for a
48、djacent floors shall be at least equal to the duration of constructing a floor. Similarly, the constraint of a start time of j+2nd floor can be obtained as </p><p><b> (3)</b></p><p&g
49、t; Substituting equation (2) into equation (3), we have</p><p><b> (4)</b></p><p> From equation (4), it can be deduced that the interval between the start times for two floors wi
50、th r floors apart shall be at least equal to r times the duration of a floor. The graphic representation of equation (4) is shown in Figure 2(b).</p><p> Figure 2 Graphical representation of constraint for
51、 down-up construction</p><p><b> 中文譯文:</b></p><p> 基于圖解的鋼筋混凝土建筑物多級施工計(jì)劃法</p><p> Y. C. huang</p><p> 中華人民共和國,臺灣,臺北縣,中和市華信街111號,華夏科技和商業(yè)研究所,建設(shè)管理部門</p>
52、;<p> 2004年2月13日提交,2005年3月4日發(fā)表</p><p> 在臺灣,日益激烈的競爭環(huán)境使得承建商傾向?qū)W⒂谀承┨囟愋偷慕ㄔO(shè),并且這種專業(yè)化需要一些計(jì)劃模型來為不同類型的建設(shè)提供更好的組織成果。一種新的實(shí)用的方法,基于圖解的多級計(jì)劃法(GMSM)來組織鋼筋混凝土建筑上層建筑的施工在此呈現(xiàn)。從鋼筋混凝土建筑物的特點(diǎn)和施工定制分析可知,有四個約束條件,(一)順序施工(二)建設(shè)檢驗(yàn)
53、(三)梁模板的反復(fù)利用,以及(四)板模板的反復(fù)利用,可以被建立。 由于GMSM被開發(fā)利用是基于圖解的方法和資源再利用的概念,也就可以推得,一般形式的GMSM可以輕松的運(yùn)用于任何軟件。這項(xiàng)研究的結(jié)果為有效的指導(dǎo)鋼筋混凝土建筑物上層建筑的施工提供了一些定量的信息。</p><p> 關(guān)鍵詞:多級施工計(jì)劃,重復(fù)工序,鋼筋混凝土建筑,GMSM</p><p><b> 說明</
54、b></p><p> 在臺灣,日益激烈的競爭環(huán)境使得承建商傾向?qū)W⒂谀承┨囟愋偷慕ㄔO(shè),并且這種專業(yè)化需要一些計(jì)劃模型為不同類型的建設(shè)提供更好的組織成果。在臺灣,位于市區(qū)的高層建筑大部分是鋼筋混凝土結(jié)構(gòu)。對于高層建筑這種建筑類型的利用是非常受到重視的,它不僅可以增加利潤,而且可以減少對城市交通的影響。</p><p> 對于安排高層建筑的施工日期,網(wǎng)絡(luò)計(jì)劃技術(shù)已經(jīng)普遍被采用。關(guān)
55、鍵路徑法(CPM)是最流行的一種,例如,MS Project,Primaver計(jì)劃軟件等,都是基于關(guān)鍵線路法。然而,假設(shè),所有活動都是獨(dú)立的,當(dāng)在每一層樓有重復(fù)相同的活動時,關(guān)鍵線路法不會考慮資源的反復(fù)利用。</p><p> O’Brien(1975)提出,高層建筑施工工序被分為兩類:(1)非重復(fù)性工程,如土方工程,基礎(chǔ)工程,非標(biāo)準(zhǔn)平面層工程;(2)重復(fù)性工程,如基于標(biāo)準(zhǔn)層設(shè)計(jì)的上層建筑。在前一類,關(guān)鍵線路法
56、被用來執(zhí)行計(jì)劃。對于后者,適于反復(fù)施工的計(jì)劃模型,尚有待開發(fā)。香港地產(chǎn)建設(shè)商會(1990)和Cole(1991)也證明了重復(fù)施工計(jì)劃的必要性。</p><p> 這項(xiàng)研究中,根據(jù)O'Brien的建議,是開發(fā)一個基于圖解的施工計(jì)劃,適用于鋼筋混凝土建筑上層建筑的重復(fù)工序。因此,在臺灣,利用木模板施工現(xiàn)澆混凝土結(jié)構(gòu)最普遍實(shí)用的施工方法,應(yīng)該能和它建立聯(lián)系。</p><p><b
57、> 文獻(xiàn)綜述</b></p><p> 理論分析重復(fù)工序施工計(jì)劃法是基于“流水作業(yè)” 的原則,其中有兩個前提:(1)從一個施工段到下一個施工段的每一項(xiàng)工序都是連續(xù)的,和(2)同一施工段內(nèi)的相鄰工作之間的間隔時間的限制是適當(dāng)?shù)?。重?fù)施工計(jì)劃的原則性方法是平衡線(LOB)法和線性計(jì)劃法(LSM)。它們之間的區(qū)別是,具有相同工序的施工段之間的持續(xù)時間,對于平衡線法是不變的,而對于線性計(jì)劃法是可變的
58、。(Moselhi哈立德,1993年)</p><p> 近幾十年來,重復(fù)工序的施工計(jì)劃方法已被大量開發(fā),如線性規(guī)劃法(Handa and Barcia,1986年;香港地產(chǎn)建設(shè)商會,1990(RPM); Russell and Caselton,線性規(guī)劃,1998年),動態(tài)計(jì)劃(Selinger,1980年;Russell and Caselton,1988; Eldin and Senouci,1994年;
59、 Senouc 和Eldin,1996年;El-Rayes和Moselhi,2001年),模擬法(Halpin,1977年(CYCLONE); Ashley,1980; Kavanagh,1985(SIREN); AbouRizk和Halpin,1990年; Lutz等,1994; Chehayeb和AbouRizk,1998年;Shi與AbouRizk,1998年),神經(jīng)網(wǎng)法(Adeli和Karim 1997),遺傳算法;(Hegaz
60、y和Wassef,2001年;Leu and Hwang,2001)。</p><p> 上述研究的共同假設(shè)是每個活動從一個施工段到另一施工段工作是連續(xù)的,或局部施工段工作是連續(xù)的。Wang和Huang(1998)提出了多級線性計(jì)劃(MLS)的方法來解決被間隔時間上限限制的同一施工段相鄰的工序的安排問題?;诙嗉壘€性計(jì)劃可以發(fā)現(xiàn),相鄰工序的開始間隔時間最少等于這個施工段上最長的工序持續(xù)時間。</p>
61、<p> 此外,一些高層建筑的施工計(jì)劃方法已提出。O’Brien(1975)提出的垂直生產(chǎn)法(VPM),采取一個每項(xiàng)工序具有既定施工速度的流水作業(yè)線概念。一種利用圖解技術(shù)檢驗(yàn)每項(xiàng)工序是否符合施工邏輯。Thabet和Beliveau(1994)通過分析了一個施工段每一個工序的開始時間,并建立了一個水平和垂直邏輯計(jì)劃(HVLS)來管理在高層建筑的水平和垂直約束。這種計(jì)劃安排可以基于關(guān)鍵層被應(yīng)用,并由用戶指定的水平和/或垂直的
62、限制決定。此外,Thabet和Beliveau(1997)以知識系統(tǒng)程序來調(diào)整水平和垂直邏輯計(jì)劃的過程,因此,它將滿足施工面和有用資源的約束。</p><p> 當(dāng)這些模型滿足樓層上相同工序的連續(xù)性假設(shè)時,它們就被用于鋼結(jié)構(gòu)或型鋼混凝土結(jié)構(gòu)。然而本文的目的是提出一個可用于鋼筋混凝土多層建筑物的施工計(jì)劃模型。這個基于圖解方法的計(jì)劃模型是基于純數(shù)學(xué)方法計(jì)算出的可利用資源的概念來確定每層鋼筋混凝土建筑物的開始時間。下
63、面將闡述GMSM詳細(xì)的假設(shè)和公式。</p><p><b> 假設(shè)和約束條件</b></p><p><b> 假設(shè):</b></p><p> 基于GMSM的假設(shè),通過分析鋼筋混凝土建筑上層建筑的施工定制和特點(diǎn),推導(dǎo),總結(jié)如下:</p><p> (1)每一樓層每項(xiàng)工作的連續(xù)性保持不變。&
64、lt;/p><p> ?。?)任一樓層任何工作必須等到前一樓層相同工作結(jié)束才能開始。</p><p> ?。?)在不同樓層的每個工序的持續(xù)時間應(yīng)是恒定的;并且</p><p> ?。?)每層樓的施工方法應(yīng)保持相同。</p><p> 由于模板工人和鋼筋工人這兩大類勞工在臺灣是鋼筋混凝土建筑上層建筑施工的主要工種,所以,保持每層樓工作的連續(xù)性可以
65、減少空閑時間。因此,第一個假設(shè)與鋼筋混凝土建筑物的建設(shè)定制相一致。第二個假設(shè)滿足資源重復(fù)利用。是由于鋼筋混凝土建筑物的施工方法,包括一些明確的工序,如由熟練鋼筋,模板工操作的相同工序的持續(xù)時間在每一樓層幾乎是相同的。為了簡化,假設(shè)相同的工序的持續(xù)時間事實(shí)上是不變的。第四個假設(shè)與特定施工方法重復(fù)施工上層建筑的定義相符。</p><p><b> 一層的施工流程</b></p>
66、<p> 從第四個假設(shè)可知,一項(xiàng)必須確定的事是在工作流程中的施工工序都有哪些,并把這一流程作為 GMSM開始的基礎(chǔ)。在臺灣,鋼筋混凝土建筑上層建筑的施工方法是使用木制模板施工現(xiàn)澆混凝土結(jié)構(gòu)。鋼筋混凝土建筑物一層的工作流程包括9個工序,如圖1(a)所示。同時,它假設(shè),對于一個工作流程,非關(guān)鍵路徑上的活動的時間不應(yīng)超過關(guān)鍵路徑上的活動時間。為簡化問題,我們使工作流程包括七個工序,如圖1(b)所示。</p><
67、p><b> 圖1 層流水工序</b></p><p><b> W1:放線</b></p><p><b> W2:綁柱鋼筋</b></p><p><b> W3:支墻柱模板</b></p><p> W4:支梁模板和支撐</p&
68、gt;<p> W5:支梁,板模板和支撐</p><p> W6:綁梁板樓梯鋼筋</p><p><b> W7:澆筑混凝土</b></p><p><b> W8:組裝腳手架</b></p><p><b> W9:綁墻鋼筋</b></p>
69、<p> 鋼筋混凝土建筑物一層的工作流程可以簡化成七個施工步驟:(1)放線;(2)綁扎柱鋼筋;(3)豎立墻和柱的模板,綁扎墻鋼筋;(4)樹立梁模板和支撐;(5)樹立樓板,樓梯模板和支撐;(6)綁扎梁,板和樓梯鋼筋;(7)混凝土澆筑,如圖1(b)所示。在圖1中,Wi和Di的符號在這項(xiàng)研究中代表流水工作的每一項(xiàng)工序,和其分別的持續(xù)時間。</p><p> 因?yàn)闊o論是放線還是混凝土澆筑的工序(盡管需要
70、更多的專業(yè)技能和泵車)都比其它工序花費(fèi)更少的時間,承包商通常轉(zhuǎn)包這兩個工序,以降低成本。其余的工序需要模板和鋼筋工人操作。</p><p><b> 計(jì)劃的約束</b></p><p> 從圖1展示的鋼筋混凝土建筑上層建筑計(jì)劃工序施工流程可以看出,它需要考慮的不僅是在標(biāo)準(zhǔn)層每項(xiàng)工序的資源的輸入(例如最少勞動組合)和施工能力(最少工作空間),而且還有三個因素需要考慮
71、:(1)順序施工(2)建筑檢查定制,(3)模板重利用,這些全都影響鋼筋混凝土施工。此外,這些因素可以轉(zhuǎn)化為限制性公式用于建立GMSM。</p><p><b> 順序施工的約束</b></p><p> 在一般情況下,鋼筋混凝土建筑上層建筑會在每一層用相同的施工方法施工。它與重復(fù)項(xiàng)目(商會,1990年)的定義是一致的,并且只能從低層逐一向上施工。此外,一個樓層放線
72、的開始,必須在先前樓層澆筑混凝土后推遲1天。由于相鄰樓層的建設(shè)不能同時進(jìn)行,鋼筋混凝土建筑上層建筑必須具備順序施工的特點(diǎn)。</p><p> 舉個例子,由于鋼筋混凝土建筑上層建筑的順序施工的特點(diǎn),在j=第一層上結(jié)構(gòu)布局的工序,必須在第j層混凝土澆筑完成后開始。這一特點(diǎn)的圖解如圖2(a)所示,其限制性公式表示為公式(1):</p><p><b> (1)</b>&
73、lt;/p><p> 由于為每一個樓層內(nèi)的工序的連續(xù)性一直保持,根據(jù)第一個假設(shè),F(xiàn)7j可以表示為Sj1+Dk,通過方程(1),可以寫成與每層工序1有關(guān)的開始時間的限制性公式,方程(2)所示:</p><p><b> ?。?)</b></p><p> ?。?)式的意義是,相鄰樓層結(jié)構(gòu)布局之間的時間間隔應(yīng)該至少等于建設(shè)一個樓層的時間。同樣,第j+
74、2樓層的開始時間的約束,可以由下式得到:</p><p><b> ?。?)</b></p><p> 方程(3)代入方程(2),我們知</p><p><b> (4)</b></p><p> 從方程(4),可以推斷, r層樓之間的開始時間的時間間隔應(yīng)該至少等于一層樓持續(xù)時間的r倍。方程(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于圖解的鋼筋混凝土建筑物多級施工計(jì)劃法
- 淺談鋼筋混凝土建筑物裂縫
- 芻議建筑鋼筋混凝土結(jié)構(gòu)施工
- 淺析建筑鋼筋混凝土結(jié)構(gòu)施工
- 鋼筋混凝土建筑結(jié)構(gòu)的加固技術(shù)
- 鋼筋混凝土建筑結(jié)構(gòu)優(yōu)化設(shè)計(jì)解析
- 無縫概念超長鋼筋混凝土建筑要點(diǎn)分析
- 鋼筋混凝土建筑結(jié)構(gòu)現(xiàn)代抗震思路
- 探析鋼筋混凝土建筑結(jié)構(gòu)安全設(shè)計(jì)
- 對鋼筋混凝土建筑結(jié)構(gòu)抗震思路
- 分析鋼筋混凝土建筑結(jié)構(gòu)的加固技術(shù)
- 淺析建筑鋼筋混凝土施工技術(shù)
- 鋼筋混凝土外文翻譯
- 鋼筋混凝土外文翻譯
- 高層鋼筋混凝土建筑結(jié)構(gòu)抗震延性設(shè)計(jì)
- 建筑鋼筋混凝土設(shè)計(jì)之我見
- 鋼筋混凝土建筑抗連續(xù)倒塌對策的研究.pdf
- 鋼筋混凝土建筑結(jié)構(gòu)安全設(shè)計(jì)的幾點(diǎn)探討
- 土木外文翻譯--- 鋼筋混凝土
- 探討建筑施工中鋼筋混凝土技術(shù)的應(yīng)用
評論
0/150
提交評論