版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 關于傳動花鍵和平鍵的外形設計</p><p> Daniel Z.Li</p><p> 摘要:花鍵和平鍵是安裝在軸和鍵槽間的傳輸動力的機械零件?;ㄦI(或鍵)通常安裝在動力傳動副中的軸上,在軸上開有相應的鍵槽。本文分析了槽軸外形對動力傳輸的影響。本文陳述了三種不同設計類型的花鍵的外形設計。用微分的方法來計多算外形函數的最大值,可以成功地得到所要的數據。計算表明花鍵
2、以及斷開線外形引起鍵槽的變形。此外,他們能承載最大的傳動載荷。另外,輻形平直的外形能提高傳動的效率。我們認為該發(fā)現(xiàn)值得報道,該種方法同時也可用于其他花鍵的設計。</p><p><b> 介紹</b></p><p> 鍵是安裝在軸和鍵槽等動力傳動裝置如齒輪和扣練齒輪之間的零件?;ㄦI發(fā)揮著和鍵一樣的作用,將力矩從軸傳到配合零件上。花鍵和平鍵的主要區(qū)別是花鍵和平鍵連
3、為一體的,而鍵是安裝在鍵槽上的。與一個或兩個用來傳動動力的鍵相比,在軸上一般有四個或更多的花鍵。因此,傳輸的力矩更恒定,每個花鍵上的所受的載荷較低。在傳輸力矩中,花鍵發(fā)揮著重要的作用,花鍵的外形對動力傳輸的影響很大。與共軛外形不同,帶有花鍵和鍵槽的軸有同樣的轉動軸,他們之間沒有相對運動,是緊密配合的。他們聯(lián)結在一起,有著相同的角速度。因此,它表明除軸外形之外的任何外形都可以用做花鍵的設計。然而,實際上花鍵和鍵槽間的載荷并不是分布在整個接
4、觸表面的。載荷通常集中在接觸表面的某小一部分和可變形的鍵表面。當循環(huán)工作較久時,這就會引起軸和鍵槽之間不希望得到的空隙,并引起鍵槽表面的損壞。為了解決這些問題,需要更進一步分析花鍵的外形是怎樣影響力矩傳輸的,以便做出合適的花鍵外形設計。</p><p> 目前使用中主要有兩種花鍵,分別為直線邊花鍵和漸進線花鍵。漸進線花鍵具有自動調心的配合零件,可以用標準平頭釘切削器切除齒輪的齒。目前,相關的研究都著重于共軛外形
5、齒輪的設計以及彎曲外形的設計,以來減少配合表面的磨損。然而,由于不同的工作狀況,它們都不能直接應用于花鍵的外形。在本論文中,建立了花鍵外形的基本公式,在不同設計對象中用來分析所要求的外形。三個設計對象,恒定變形,傳輸最大力矩和最佳傳動效率,這三項被用來計算花鍵外形。成功地得到了分析方法。</p><p> 2 陳述問題并提出基本假設</p><p> 如圖1所示,軸傳動輪轂同時花鍵固定
6、在軸上。設計要求決定了軸半徑、花鍵高度、花鍵齒數,因此不能改動。只能通過改變花鍵的輪廓來提高傳動性能。為簡化設計問題以便于分析,做出以下幾點假設:</p><p><b> 花鍵是剛體</b></p><p> 相對輪轂,花鍵由剛性材料制成并假設它在承受負載后無變形。</p><p><b> 輪轂屬彈性變形</b>
7、</p><p> 輪轂表面變形在彈性變形范圍內時,表面壓力與變形量成正比。</p><p><b> 花鍵無軸向變形</b></p><p> 通?;ㄦI的齒高相對于齒寬尺寸小很多。因此,我們假設鍵端無積累變形,只有輪轂面有變形。</p><p> 花鍵與輪轂接觸處無間隙(面接觸)</p><
8、p> 花鍵形狀與輪轂形狀不考慮制造誤差完全一致。它們屬于面接觸沒有間隙。</p><p><b> 圖1 花鍵</b></p><p> 3 花鍵變形跟輪轂變形一致</p><p> 設計的第一目標是使輪轂表面變形一致,那就要求輪轂上的壓力均布。這樣能保證表面承受的壓力均勻分布,以避免一些危險點損壞材料。如圖2,表示軸半徑,表示花
9、鍵的小旋轉角。因為我們假定花鍵為剛體,所以花鍵任兩點之間的變化就是輪轂的變形。花鍵聯(lián)接按照鍵的橫截面開頭分為矩形花鍵聯(lián)接和漸開線花鍵聯(lián)接。</p><p><b> 圖2 花鍵小旋轉角</b></p><p> 4 危險截面確定簡單</p><p> 傳統(tǒng)設計方法考慮的前提是把影響零件工作狀態(tài)的設計變量,如應力、強度、安全系數、載荷、環(huán)境
10、因素、材料性能、零件尺寸和結構因素等,都處理成確定的單值變量。描述零件狀態(tài)的數學模型,即變量與變量的關系,是通過確定性的函數進行單值變換獲得危險截面。</p><p> 常用的危險截面的確定方法有以下幾種:</p><p> 4.1 花鍵的最小直徑法</p><p> 花鍵危險截面的可靠度非常高(幾乎為 100%),這是由于花鍵的直徑是按傳統(tǒng)的設計經驗確定的。
11、若要求適當的可靠度值,則花鍵的直徑可選用較小的值。</p><p> 4.2 可靠性安全系數法</p><p> 采用可靠性安全系數法設計時,必須知道應力和強度的分布類型與分布參數估計值。而可靠性數據的積累又是一項長期的工作,因而我們必須利用現(xiàn)有的數據資料,運用有關定理與法則(如中心極限定理和“3 法則”等 ),來確定設計過程中所涉及的許多隨機變量的分布類型與分布參數。在可靠性安全系數
12、計算 中,是把所涉及的設計參數都處理成隨機變量,將安全系數的概念與可靠性的概念聯(lián)系起來,從而建立相應的概率模型。由于考慮到工程實際中發(fā)生的現(xiàn)象及表征參數的不確定性(隨機性),因而更能揭示事物的本來面貌。理論分析與實踐表明,可靠性設計比傳統(tǒng)機械設計,能更有效地處理設計中一些問題,提高產品質量,減少零件尺寸,從而節(jié)約原材料,降低成本。</p><p><b> 5 結束語</b></p&
13、gt;<p> 機械可靠性設計是近幾十年來發(fā)展起來的一種現(xiàn)代設計理論和方法,它以提高產品質量為核心 ,以概率論 、數理統(tǒng)計為基礎 ,綜合運用工程力學 、系統(tǒng)工程學 、運籌學等多學科知識來研究機械工程最優(yōu)設計問題。目前 ,可靠性設計的理論已趨于完善,但真正用于機械零件設計工程實際的卻很少。采用可靠性安全系數法設計時,必須知道應力和強度的分布類型與分布參數估計值。而可靠性數據的積累又是一項長期的工作,因而我們必須利用現(xiàn)有的數
14、據資料,運用有關定理與法則,來確定設計過程中所涉及的許多隨機變量的分布類型與分布參數。</p><p> 本文講述了三種花鍵(或平鍵)形狀最佳設計標準。用變量積分法來確定輪廓公式以及最大值,由此獲得分析結果。從結果可以看出,漸開線花鍵導致輪轂變形一致,此外,能傳遞的載荷最大。另外,矩形花鍵傳動最高效。相信如果要增加新的性能標準,別的形狀的花鍵很少會被用到。</p><p><b&g
15、t; 參考文獻</b></p><p> [1] Robert L. Mott, Machine Elements in Mechanical Design, third ed., Prentice-Hall Inc., 1999.</p><p> [2] M.F. Spotts, Design of Machine Elements, third ed., Prent
16、ice-Hall Inc., 1961.</p><p> [3] Joseph E. Shigley, Larry D. Mitchell, Mechanical Engineering Design, fourth ed., McGraw-Hill Inc., 1983.</p><p> [4] D.C.H. Yang, S.H. Tong, J. Lin, Deviation-
17、function based pitch curve modification for conjugate pair design, Transaction of ASME Journal of Mechanical Design 121 (4) (1999) 579–586.</p><p> [5] S.H. Tong, New conjugate pair design—theory and applic
18、ation, PhD Dissertation, Mechanical and Aerospace Engineering Department, UCLA, 1998.</p><p> [6] F.L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall Inc., 1994.</p><p> [7] D.B. Doon
19、er, A.A. Seireg, The Kinematic Geometry of Gearing, John Wiley & Sons Inc., 1995, pp. 56–63.</p><p> [8] Y. Ariga, S. Nagata, Load capacity of a new W–N gear with basic rack of combined circular and inv
20、olute profile, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 107 (1985) 565–572.</p><p> [9] M.J. French, Gear conformity and load capacity, in: Proc Instn Mech Engrs, v
21、ol. 180(43), Pt 1, (1965–66), pp. 1013–1024.</p><p> [10] A.O. Lebeck, E.I. Radzimovsky, The synthesis of tooth profile shapes and spur gears of high load capacity, Transaction of ASME Journal of Engineerin
22、g for Industry (1970) 543–553.</p><p> [11] H. Iyoi, S. Ishimura, v-Theory in gear geometry, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 105 (1983) 286–290.</p>
23、<p> [12] J.E. Beard, D.W. Yannitell, G.R. Pennock, The effects of the generating pin size and placement on the curvature and displacement of epitrochoidal gerotors, Mechanism and Machine Theory 27 (4) (1992) 373–
24、389.</p><p> [13] H.C. Liu, S.H. Tong, D.C.H. Yang, Trapping-free rotors for high sealing lobe pumps, Transaction of ASME Journal of Mechanical Design 122 (4) (2000) 536–542.</p><p> [14] Char
25、les Fox, Calculus of Variations, Oxford University Press, 1954.</p><p> ARTICLE IN PRESS</p><p> On the profile design of transmission splines and keys</p><p> Daniel Z.Li </p
26、><p> Abstract: Splines and keys are machinery components placed at the interface between shafts and hubs of power-transmitting elements. A spline (or key) is usually machined (or attached) onto the shaft of a
27、 power-transmitting pair, and the corresponding groove is cut into the hub. The influence of spline profiles on the performance of power transmission is investigated in this paper. The optimal design of spline profiles f
28、or three different design criteria is presented. The method of calculus of va</p><p> Introduction</p><p> A key is a machinery component placed at the interface between a shaft and the hub of
29、 a power-transmitting element such as gear and sprocket . A spline performs the same function as a key in transmitting torque from the shaft to the mating element . The main difference between splines and keys is that sp
30、lines are integral with the shaft but keys are inserted between shaft and hub. As compared with one or two keys used for load transmission, there are usually four or more splines on a shaft. Ther</p><p> Cu
31、rrently there are two main types of splines used, namely, straight-sided and involute splines. The involute splines provide the mating element with self-centering and can be machined with standard hob cutter used to cut
32、gear teeth. To date, the related research work focuses on conjugate profiles and gear design as well as the design of profile curvatures for reducing the wear of contact surfaces. However, none of them can be applied t
33、o the profiles of splines directly due to different workin</p><p> Problem description and basic assumptions</p><p> As shown in fig .1, The hub is driven by the shaft and the spline is fixed
34、on the shaft. The radius of the shaft, the height of the spline, and the number of spline teeth are determined by the design requirements and cannot be altered. Only the spline profile can be modified to improve the perf
35、ormance of transmission. To simplify the design problem for analysis, the following assumptions were made:</p><p> (1) The spline is a rigid body.</p><p> Compared with the hub, the spline is
36、made of hard material and assumed no deformation after applying the load.</p><p> (2) The hub is under elastic deformation</p><p> The surface deformation of the hub is within the range of ela
37、sticity and the surface stress is proportional to the normal deformation.</p><p> (3) There is no beam deformation on the spline.</p><p> For spline keys, usually the height of tooth shape is
38、small relative to its width. Therefore, we assume there is no accumulated deformation at the free end. The only deformation is the normal deformation on the hub surface.</p><p> (4) There is no clearance be
39、tween the spline and hub when they are in contact. (Surface contact)</p><p> The profile of the spline is exactly the same as that of the hub without considering manufacturing errors. They are in surface co
40、ntact without clearance.</p><p> 3 Spline profile for uniform hub deformation</p><p> The first design objective is to have the uniform deformation on the surface of the hub, which also impli
41、es the uniform stress on the hub. This design can ensure the surface stress is evenly distributed and avoid the failure of material at some weak points. Referring to fig.2, Let denote the radius of shaft and denote a s
42、mall rotation angle of spline. Since we assume that the spline is a rigid body, the change between two spline positions will be the deformation of the hub. </p><p> 4 It’s simply to confirmed the dangerous
43、 sections </p><p> Prerequisite that traditional design method considered whether pair influence part design variable of working state, for instance stress , intensity , safety coefficient , load , environm
44、ental factor , material performance , part size and structural factor ,etc., deal with the single value variable confirmed. Describe part mathematical model of state , i.e. variable and relation of variable , to go on si
45、ngle value vary and win the dangerous section through deterministic function.</p><p> There are several methods that usually the dangerous sections are determined: </p><p> Minimum diameter of
46、 the spline </p><p> Spline dangerous sectional reliability very getting high, this to confirm according to traditional design experience because of diameter of spline. If require appropriate reliability va
47、lue, then the diameter of the axle can select smaller value for use .</p><p> Safety coefficient law of dependability </p><p> While adopting the safety coefficient law design of dependability
48、 , must know the distribution types of stress and intensity and be distributed estimated value of the parameter . And the accumulation of dependability data is a long-term job, therefore we must utilize the existing data
49、 materials , it is (such as the terminal theorem in the centre and " 3 rules " to use relevant theorems and rule ), to confirm the distribution types of a lot of random variables involved of design process and
50、is di</p><p> 5 Concluding remarks</p><p> The mechanical reliability design is one kind of modern design theory and the method which in the recent several dozens years develop, it take impro
51、ves the product quality as the core, take the theory of probability, the mathematical statistic as the foundation, synthesizes using the engineering mechanics, the system engineering, the operations research and so on th
52、e multi-disciplinary knowledge studies the mechanical engineering most superior design question. At present, the reliability design </p><p> References</p><p> [1] Robert L. Mott, Machine Elem
53、ents in Mechanical Design, third ed., Prentice-Hall Inc., 1999.</p><p> [2] M.F. Spotts, Design of Machine Elements, third ed., Prentice-Hall Inc., 1961.</p><p> [3] Joseph E. Shigley, Larry D
54、. Mitchell, Mechanical Engineering Design, fourth ed., McGraw-Hill Inc., 1983.</p><p> [4] D.C.H. Yang, S.H. Tong, J. Lin, Deviation-function based pitch curve modification for conjugate pair design, Transa
55、ction of ASME Journal of Mechanical Design 121 (4) (1999) 579–586.</p><p> [5] S.H. Tong, New conjugate pair design—theory and application, PhD Dissertation, Mechanical and Aerospace Engineering Department,
56、 UCLA, 1998.</p><p> [6] F.L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall Inc., 1994.</p><p> [7] D.B. Dooner, A.A. Seireg, The Kinematic Geometry of Gearing, John Wiley & Sons
57、 Inc., 1995, pp. 56–63.</p><p> [8] Y. Ariga, S. Nagata, Load capacity of a new W–N gear with basic rack of combined circular and involute profile, Transaction of ASME Journal of Mechanisms, Transmissions,
58、and Automation in Design 107 (1985) 565–572.</p><p> [9] M.J. French, Gear conformity and load capacity, in: Proc Instn Mech Engrs, vol. 180(43), Pt 1, (1965–66), pp. 1013–1024.</p><p> [10] A
59、.O. Lebeck, E.I. Radzimovsky, The synthesis of tooth profile shapes and spur gears of high load capacity, Transaction of ASME Journal of Engineering for Industry (1970) 543–553.</p><p> [11] H. Iyoi, S. Ish
60、imura, v-Theory in gear geometry, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 105 (1983) 286–290.</p><p> [12] J.E. Beard, D.W. Yannitell, G.R. Pennock, The effects of
61、 the generating pin size and placement on the curvature and displacement of epitrochoidal gerotors, Mechanism and Machine Theory 27 (4) (1992) 373–389.</p><p> [13] H.C. Liu, S.H. Tong, D.C.H. Yang, Trappin
62、g-free rotors for high sealing lobe pumps, Transaction of ASME Journal of Mechanical Design 122 (4) (2000) 536–542.</p><p> [14] Charles Fox, Calculus of Variations, Oxford University Press, 1954.</p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--關于傳動花鍵和平鍵的外形設計
- 鍵和花鍵聯(lián)結的精度
- 基于加權輪軌縫的最佳車輪外形設計外文翻譯
- 機械設計 鍵、花鍵及銷聯(lián)接
- 關于凸輪設計的外文翻譯
- 流體傳動外文翻譯
- 外文翻譯---流體傳動
- 液壓傳動畢業(yè)設計(含外文翻譯)
- 關于plc的畢業(yè)設計外文翻譯
- 氣壓傳動外文翻譯
- 關于plc的畢業(yè)設計外文翻譯
- 外文翻譯--液壓傳動和氣壓傳動
- 花鍵傳動軸零件設計
- 花鍵傳動軸零件設計
- 液壓傳動和傳動油課程畢業(yè)設計外文文獻翻譯、中英文翻譯、外文翻譯
- 外文翻譯--動力傳動系a
- 外文翻譯--傳動系統(tǒng)
- 外文翻譯--液壓傳動.doc
- 外文翻譯--流體傳動.doc
- 外文翻譯--流體傳動.doc
評論
0/150
提交評論