版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 本科畢業(yè)設(shè)計(論文)外文翻譯譯文</p><p> 學(xué)生姓名: </p><p> 院 (系): </p><p> 專業(yè)班級: </p><p> 指
2、導(dǎo)教師: </p><p> 完成日期: </p><p><b> 要 求</b></p><p> 1、外文翻譯是畢業(yè)設(shè)計(論文)的主要內(nèi)容之一,必須學(xué)生獨立完成。</p><p> 2、外文翻譯譯文
3、內(nèi)容應(yīng)與學(xué)生的專業(yè)或畢業(yè)設(shè)計(論文)內(nèi)容相關(guān),不得少于15000印刷符號。</p><p> 3.外文翻譯譯文用A4紙打印。文章標(biāo)題用3號宋體,章節(jié)標(biāo)題用4號宋體,正文用小4號宋體,20磅行距;頁邊距上、下、左、右均為2.5cm,左側(cè)裝訂,裝訂線0.5cm。按中文翻譯在上,外文原文在下的順序裝訂。</p><p> 4、年月日等的填寫,用阿拉伯?dāng)?shù)字書寫,要符合《關(guān)于出版物上數(shù)字用法的試
4、行規(guī)定》,如“2005年2月26日”。</p><p> 5、所有簽名必須手寫,不得打印。</p><p> 一些周期性的二階線性微分方程解的方法</p><p> Some Properties of Solutions of Periodic Second Order Linear Differential Equations</p><
5、;p> 作者:肖立鵬1,陳宗軒2</p><p> 起止頁碼:譯文 2-7,8-12 原文 13-19,20-25</p><p> 出版日期(期刊號):ISSN 1000—341X.2011.02.011</p><p> 出版單位:數(shù)學(xué)研究與評論</p><p><b> 外文翻譯譯文:</b>&l
6、t;/p><p> 一些周期性的二階線性微分方程解的方法</p><p><b> 簡介和主要成果</b></p><p> 在本文中,我們假設(shè)讀者熟悉的函數(shù)的數(shù)值分布理論[12,14,16]的基本成果和數(shù)學(xué)符號。此外,我們將使用的符號,and ,表示的順序分別增長,低增長的一個純函數(shù)的零點收斂指數(shù),,([8]),E型的f(z),被定義為&l
7、t;/p><p> 同樣,,E型的亞純函數(shù)的零點收斂指數(shù),被定義為</p><p> 我們說,如果一個亞純函數(shù)滿足增長的正常秩序</p><p> 我們考慮的二階線性微分方程</p><p> 在是一個整函數(shù)在。在(1.1)的反復(fù)波動理論的第一次探討中由銀行和萊恩[6]。已經(jīng)進行了研究在(1.1)中,并已取得各種波動定理在[2{11,13
8、,17{19]。在函數(shù)中正確的,銀行和萊恩[6]證明了如下定理</p><p> 定理A 設(shè)這函數(shù)是一個周期性函數(shù),周期為在整個函數(shù)存在。如果有奇數(shù)階極點在和,然后對于任何一個結(jié)果答案在(1.1)中</p><p> 廣義這樣的結(jié)果:上述結(jié)論仍然認為,如果我們只是假設(shè),既和的極點,并且至少有一個是奇數(shù)階。此外,較強的結(jié)論</p><p><b> ?。?/p>
9、1.2)</b></p><p> 認為。當(dāng)是超越在,高[10]證明了如下定理</p><p><b> 定理B</b></p><p> 設(shè),其中是一個超越整函數(shù)與,是奇正整并且,設(shè),那么任何微分解在(1.1)的函數(shù)必須有。事實上,在(1.2)已經(jīng)有證明的結(jié)論。</p><p> 是在[10] 一個
10、例子表明當(dāng)定理B不成立時,是任意正整數(shù)。如果在另一方面,但如果沒有一個正整數(shù),我們可以說些什么呢?蔣和高[8]得到以下定理</p><p><b> 定理C </b></p><p> 設(shè),其中,函數(shù)和函數(shù)是整函數(shù)先驗和不等于一個正整數(shù)或無窮大,并函數(shù)任意。</p><p> 假設(shè)(a)如果函數(shù)f是一個非平凡解在(1.1),那么和是線性相
11、關(guān)。</p><p> ?。╞)如果函數(shù)和函數(shù)在(1.1)是兩個線性無關(guān)函數(shù),則存在這樣一個條件。</p><p> 假設(shè)(a)如果函數(shù)f有一個非平凡解在(1.1)且,和是線性相關(guān)的。</p><p> 如果函數(shù)和函數(shù)在(1.1)在(1.1)是兩個線性無關(guān)函數(shù),則存在這樣一個條件。</p><p><b> 定理 D <
12、/b></p><p> 讓是一個超越整函數(shù)和它的秩序是正整數(shù)或無窮大。設(shè),和p是一個奇正整數(shù)。然后或F得到每一個非平凡解在(1.1)。事實上,在(1.2)中已經(jīng)有證明的結(jié)論。</p><p> 例子表明在高[8]定理D不再成立,當(dāng)是無窮的。</p><p> 本文的主要目的是改善上述結(jié)果的情況下,當(dāng)是超越。特別地,我們找到的條件下定理D仍然成立的情況下
13、,當(dāng)是一個正整數(shù)或無窮大。</p><p> 我們將證明在第3節(jié)的結(jié)果如下:</p><p><b> 定理1</b></p><p> 設(shè),其中,和先驗和不等于一個正整數(shù)或無窮,任意整函數(shù)。如果定期二階線性微分方程和的解不是一些屬性是兩個線性無關(guān)的解在(1.1),然后</p><p><b> 或者&
14、lt;/b></p><p> 我們的說法,定理1的結(jié)論仍然有效,如果我們假設(shè)函數(shù)不等于一個正整數(shù)或無窮大,任意和承擔(dān)的情況下,當(dāng)其低階不等于一個整數(shù)或無窮超然是任意的,我們只需要考慮在,。</p><p><b> 推論1</b></p><p> 設(shè),其中,函數(shù)和函數(shù)是整個先驗和不超過??1 / 2,并且任意的。</p&g
15、t;<p> 如果函數(shù)f是一個非平凡解在(1.1)中,那么和是線性相關(guān)。</p><p> 如果和是兩個線性無關(guān)解在(1.1)中,那么。</p><p><b> 定理2</b></p><p> 設(shè)是一個超越整函數(shù)及其低階不超過1 / 2。設(shè),其中和p是一個奇正整數(shù),則為每個非平凡解F到在(1.1)中。事實上,在(1.2
16、)中證明正確的結(jié)論。 我們注意到,上述結(jié)論仍然有效的假設(shè)</p><p> 我們注意到,我們得出定理2推廣定理D,當(dāng)是一個正整數(shù)或無窮,但結(jié)合定理2定理的研究。</p><p><b> 推論2</b></p><p> 設(shè)是一個超越整函數(shù)。設(shè),其中和 p是一個奇正整數(shù)。假設(shè)要么(一)或(二)中認為:</p&
17、gt;<p> (一)不是正整數(shù)或無窮;</p><p><b> ?。ǘ?lt;/b></p><p> 然后為每一個非平凡解在(1.1)中函數(shù)f對于。事實上,在(1.2)中已經(jīng)有證明的結(jié)論。</p><p><b> 引理為定理的證明</b></p><p><b>
18、 引理1</b></p><p> ?。╗7]),和的假設(shè)是整個周期,并且函數(shù)f是有一個非平凡解</p><p> 進一步假設(shè)函數(shù)f滿足;,是在非恒定和理性的,而且,如果,且是常數(shù)。則存在一個整數(shù)q與 ,和是線性相關(guān)。相同的結(jié)論認為,如果是超越,和f滿足,如果,然后通過一個無限措施的集合為,且</p><p><b> 引理2</b&
19、gt;</p><p> ([10]) 設(shè)是一個周期為在(包括那些可以改變這種情況下極奇數(shù)階設(shè)是定期與整函數(shù)周期在的先驗。在(1.1)中由不同的時期,有一個滿足,那么和是線性無關(guān)的解。</p><p><b> 3.主要結(jié)果的證明</b></p><p> 主要結(jié)果的證明的基礎(chǔ)上[8]和[15]。</p><p>
20、<b> 定理1的證明</b></p><p> 讓我們假設(shè)。正弦和是線性無關(guān)的,引理1意味著和必須是線性相關(guān)的。設(shè),則滿足微分方程</p><p> , (2.1)</p><p> 其中是和(見[12, p. 5] or [1, p. 354]),且或某些非零的常數(shù)。顯然,和是兩個周期,而是定義函數(shù)。在(2.1)
21、,也定期與周期。因此,我們可以找到一個解析函數(shù)在,使代入(2.1)得這種表達</p><p><b> (2.2)</b></p><p> 由于和在,理論[21,p.15]給出了他們的結(jié)論</p><p> ,, (2.3)</p><p> 其中,是一些整數(shù),和函數(shù)分析和上非零,和是整函數(shù)。按照
22、相同的 [8]中,我們得出</p><p> , (2.4)</p><p> 其中,此外,下列結(jié)論由[8]得</p><p><b> ,</b></p><p><b> ,</b></p><p><b> 其中是定義為</
23、b></p><p><b> (resp, ),</b></p><p> 定期二階線性微分方程解的一些性質(zhì)</p><p> 其中,(resp. 表示一個計數(shù)功能,只計算在右半平面的零點(在左半平面),是在 的零點收斂指數(shù),它的定義為</p><p><b> 由條件,我們得到。</b&
24、gt;</p><p> 現(xiàn)在(2.3)代入(2.2)中</p><p><b> (2.5)</b></p><p><b> 推論1的證明</b></p><p> 我們可以很容易地推導(dǎo)出定理1的推論1(一)推論1的證明(B)。假設(shè)和與線性無關(guān),那么,我們證明推論1的結(jié)論(一),與線性相
25、關(guān),J =1;2。假設(shè),然后我們可以找到的一個非零的常數(shù),重復(fù)同樣的論點定理1中使用的事實,也是能找到,我們得到與自矛盾,因此。</p><p><b> 定理2的證明</b></p><p> 假設(shè)存在一個非平凡解的f在(1.1)中,滿足。我們推斷,和的線性依賴推論1(a)。然而,引理2意味著和是線性無關(guān)的。這是一對矛盾。因此,認為都有非平凡解的F在(1.1)中
26、,這就完成了定理2的證明。</p><p><b> 外文翻譯譯文:</b></p><p> 可控的無窮時滯中立型泛函微分方程</p><p> 摘要在這篇文章中,我們給一些偏中性無限時滯泛函微分方程的可控性的充分條件。我們假設(shè)線性部分不一定密集定義,但滿足的Hille- Yosida定理解估計。使用積分半群理論得到的結(jié)果。為了說明我們
27、給出了一下抽象結(jié)論。</p><p> 關(guān)鍵詞:可控性;積分半群; 解決方法 無窮極限</p><p><b> 引言</b></p><p> 在這篇文章中,我們建立一個關(guān)于可控的結(jié)果偏中性與無限時滯泛函微分方程的下面的類:</p><p><b> (1)</b></p>
28、<p> 狀態(tài)變量在空間值和控制用受理控制范圍的Banach空間,Banach空間。 C是一個有界的線性算子從U到E,A:A : D(A) ? E → E上的線性算子,B是函數(shù)的映射相空間( - ∞,0]在E,將在后面D是有界的線性算子從B到E為</p><p> 是從B到E的線性算子有界,每個x : (?∞, T ] → E, T > 0,,和t∈[0,T],xt表示為像往常一樣,從(映射
29、- ∞,0]到由E定義為</p><p> F是一個E值非線性連續(xù)映射在。</p><p> ODE的代表在三維空間中的線性和非線性系統(tǒng)的可控性問題進行了廣泛的研究。許多作者延長無限維系統(tǒng)的可控性概念,在Banach空間無限算子。到現(xiàn)在,也有很多關(guān)于這一主題的作品,看到的,例如,[4,7,10,21]。有許多方程可以無限延遲的研究[23]為抽象的中性演化方程的書面。近年來,中立與無限時
30、滯泛函微分方程理論在無限</p><p> 維度仍然是一個研究領(lǐng)域(見,例如,[2,9,14,15]和其中的參考文獻)。同時,這種系統(tǒng)的可控性問題也受到許多數(shù)學(xué)家討論可以看到的,例如,[5,8]。本文的目的是討論方程的可控性。 (1),其中線性部分是應(yīng)該被非密集的定義,但滿足的Hille- Yosida定理解估計。我們應(yīng)當(dāng)保證全局存在的條件,并給一些偏中性無限時滯泛函微分方程的可控性的充分條件。結(jié)果獲得的積分半
31、群理論和Banach不動點定理。此外,我們使用的整體解決方案的概念和我們不使用半群的理論分析。方程式,如無限時滯方程。 (1),我們需要引入相空間B.為了避免重復(fù)和了解的相空間的有趣的性質(zhì),假設(shè)是(半)賦范抽象線性空間函數(shù)的映射( - ∞,0到E]滿足首次在[13]介紹了以下的基本公理和廣泛[16]進行了討論。</p><p> 存在一個正的常數(shù)H和功能K,M:連續(xù)與K和M,局部有界,例如,對于任何,如果x
32、: (?∞, σ + a] → E,,和是在 [σ,σ+ A] 連續(xù)的,那么,每一個在T[σ,σ+ A],下列條件成立:</p><p><b> (i) ,</b></p><p> (ii) ,等同與 或者對伊</p><p><b> (iii) </b></p><p> ?。╝)對于
33、函數(shù)在A中,t → xt是B值連續(xù)函數(shù)在[σ, σ + a].</p><p> ?。╞)空間B是封閉的</p><p> 整篇文章中,我們還假定算子A滿足的Hille- Yosida條件:</p><p><b> 在和,和</b></p><p><b> (2)</b></p>
34、;<p> 設(shè)A0是算子的部分一個由定義為</p><p> 這是眾所周知的,和算子對于具有連續(xù)半群。</p><p> 回想一下,[19]所有和。</p><p><b> .</b></p><p> 我們還知道在,這是一個關(guān)于電子所產(chǎn)生的局部Lipschitz積分半群的衍生,按[3,17,1
35、8],一個有界線性算子的E系列,滿足</p><p><b> S(0) = 0,</b></p><p> for any y ∈ E, t → S(t)y判斷為E,</p><p> for all t, s ≥ 0, 對于 τ > 0這里存在一個常數(shù)l(τ) > 0, s所以</p><p>
36、或者 t, s ∈ [0, τ] .</p><p> C0 -半群指數(shù)有界,即存在兩個常數(shù)和 ,例如對所有的t≥0。</p><p> 一類非密集定義泛函微分方程的可控性[12]研究在有限的延誤。</p><p> 2 Main Results</p><p> 我們開始引入以下定義。</p><p> 定
37、義1設(shè)T> 0和φ∈B.我們認為以下的定義。</p><p> 我們說一個函數(shù)X:= X:( - ∞,T)→E,0<T≤+∞,是一個方程的整體解決方程Eq. </p><p> x在[0, T )是連續(xù)的。</p><p> 對于 t ∈ [0, T )</p><p> 對于t ∈ [0, T )</p>
38、<p> 對于所有t ∈ (?∞, 0].</p><p> 我們推斷[1]和[22]式的整體解決方法。 (1)給出了? ∈ B,如以下結(jié)論</p><p><b> (3)</b></p><p><b> 當(dāng)。</b></p><p> 為了獲得全局的存在性和唯一,我們應(yīng)該在
39、[1]中</p><p><b> (H2) .</b></p><p> (H3) i是連續(xù)的,存在 > 0, 所以</p><p> for ?1, ?2 ∈ B 和 t ≥ 0. (4)</p><p> 使用[1]定理7中,我們得到以下結(jié)論。</p><p> 定理1
40、 假設(shè)(H1),(H2)(H3),。設(shè)? ∈ B,這樣D? ∈ D(A).。則,存在一個獨特的整數(shù)解x(., ?) 對于Eq. (1),。 (1),定義在(?∞,+∞) .。</p><p> 定義2 在上述條件下,方程Eq. (1)被說成是在區(qū)間J = [0, δ], δ > 0,如果為每一個初始函數(shù)? ∈ B,? ∈ D(A)和任何e1 ∈ D(A),存在可控一個控制u ∈ L2(J,U)的,這樣
41、的解x(.)的Eq. (1)滿足。</p><p> 定理2假設(shè)(H1), (H2), (H3).x(.)式為整體解決方法在Eq. (1)中(?∞, δ) , δ > 0。并假設(shè)(見[20])</p><p> 的線性算子從W到U在D(A)定義為</p><p> , (5)</p><p> 誘導(dǎo)可逆的算子,
42、存在正數(shù)和滿足 和 那</p><p> 么,Eq. (1)是可控的前提是在J</p><p> , (6)</p><p><b> 當(dāng).</b></p><p> 證明 以下[1],當(dāng)整體解決方案x(.)式。Eq. (1)存在于(?∞, δ) , δ > 0,這是對所有的t ∈ [
43、0, δ]</p><p><b> 或者</b></p><p> 然后,一個任意整數(shù)解x(.)式。 (1)在(?∞, δ) , δ > 0,滿足x(δ) = e1,當(dāng)且僅當(dāng)</p><p> 這意味著,使用(5),它足以采取對所有的t ∈ J,</p><p> 以x(δ) = e1因此,我們必須采取上
44、述控制,因此,證明是減少對所有的t ∈ [0, δ]的整體解的存在性</p><p> 為了不失一般性,假設(shè) ≥ 0。 [1]類似的論點,我們可以看到的,和t∈[0,δ]</p><p> 為K是連續(xù)的,δ > 0足夠小,這樣我們可以選擇</p><p><b> .</b></p><p> 然后,P是一
45、個嚴(yán)格的收縮在,和固定的P點給出了獨特的不可分割的線上的x(., ?) on (?∞, δ],驗證x(δ) = e1。</p><p> 假設(shè)所有D(A)從U W時的線性算子定義</p><p> 0 ≤ a < b ≤ T, T > 0,誘發(fā)可逆的算子在,如存在正常數(shù)N1和N2滿足,同時,中N足夠大,下面的[1]。上述證明的一個類似的說法可以使用,看到Eq. (1)在[0
46、,T]的所有T>0是可控的。</p><p><b> 附錄1:</b></p><p><b> 外文翻譯原文:</b></p><p> Some Properties of Solutions of Periodic Second Order Linear Differential Equations&l
47、t;/p><p> Introduction and main results</p><p> In this paper, we shall assume that the reader is familiar with the fundamental results and the stardard notations of the Nevanlinna's value di
48、stribution theory of meromorphic functions [12, 14, 16]. In addition, we will use the notation,and to denote respectively the order of growth, the lower order of growth and the exponent of convergence of the zeros of a m
49、eromorphic function ,([see 8]),the e-type order of f(z), is defined to be </p><p> Similarly, ,the e-type exponent of convergence of the zeros of meromorphic function , is defined to be</p><p>
50、 We say thathas regular order of growth if a meromorphic functionsatisfies</p><p> We consider the second order linear differential equation</p><p> Where is a periodic entire function with p
51、eriod . The complex oscillation theory of (1.1) was first investigated by Bank and Laine [6]. Studies concerning (1.1) have een carried on and various oscillation theorems have been obtained [2{11, 13, 17{19]. Whenis rat
52、ional in ,Bank and Laine [6] proved the following theorem</p><p> Theorem A Letbe a periodic entire function with period and rational in .Ifhas poles of odd order at both and , then for every solutionof (1.
53、1), </p><p> Bank [5] generalized this result: The above conclusion still holds if we just suppose that both and are poles of, and at least one is of odd order. In addition, the stronger conclusion</p>
54、;<p><b> (1.2)</b></p><p> holds. Whenis transcendental in, Gao [10] proved the following theorem</p><p> Theorem B Let ,whereis a transcendental entire function with, is
55、an odd positive integer and,Let .Then any non-trivia solution of (1.1) must have. In fact, the stronger conclusion (1.2) holds.</p><p> An example was given in [10] showing that Theorem B does not hold when
56、 is any positive integer. If the order , but is not a positive integer, what can we say? Chiang and Gao [8] obtained the following theorems</p><p> Theorem C Let ,where,andare entire functionstranscendenta
57、l andnot equal to a positive integer or infinity, andarbitrary.</p><p> Suppose . (a) If f is a non-trivial solution of (1.1) with; thenandare linearly dependent. (b) Ifandare any two linearly independent s
58、olutions of (1.1), then .</p><p> Suppose (a) If f is a non-trivial solution of (1.1) with,andare linearly dependent. Ifandare any two linearly independent solutions of (1.1),then.</p><p> Th
59、eorem D Letbe a transcendental entire function and its order be not a positive integer or infinity. Let; whereand p is an odd positive integer. Thenor each non-trivial solution f to (1.1). In fact, the stronger conclusio
60、n (1.2) holds.</p><p> Examples were also given in [8] showing that Theorem D is no longer valid whenis infinity.</p><p> The main purpose of this paper is to improve above results in the case
61、 whenis transcendental. Specially, we find a condition under which Theorem D still holds in the case when is a positive integer or infinity. We will prove the following results in Section 3.</p><p> Theorem
62、 1 Let ,where,andare entire functions withtranscendental andnot equal to a positive integer or infinity, andarbitrary. If Some properties of solutions of periodic second order linear differential equations and are two li
63、nearly independent solutions of (1.1), then</p><p><b> Or</b></p><p> We remark that the conclusion of Theorem 1 remains valid if we assume</p><p> is not equal to a
64、positive integer or infinity, andarbitrary and still assume,In the case whenis transcendental with its lower order not equal to an integer or infinity andis arbitrary, we need only to consider in,.</p><p>
65、Corollary 1 Let,where,andare</p><p> entire functions with transcendental and no more than 1/2, and arbitrary.</p><p> If f is a non-trivial solution of (1.1) with,then and are linearly depe
66、ndent.</p><p> Ifandare any two linearly independent solutions of (1.1), then.</p><p> Theorem 2 Letbe a transcendental entire function and its lower order be no more than 1/2. Let,whereand p
67、is an odd positive integer, then for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.</p><p> We remark that the above conclusion remains valid if</p><p> We
68、 note that Theorem 2 generalizes Theorem D whenis a positive integer or infinity but . Combining Theorem D with Theorem 2, we have</p><p> Corollary 2 Letbe a transcendental entire function. Let where and p
69、 is an odd positive integer. Suppose that either (i) or (ii) below holds:</p><p> (i) is not a positive integer or infinity;</p><p><b> (ii) ;</b></p><p> thenfor ea
70、ch non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.</p><p> Lemmas for the proofs of Theorems</p><p> Lemma 1 ([7]) Suppose thatand thatare entire functions of pe
71、riod,and that f is a non-trivial solution of</p><p> Suppose further that f satisfies; that is non-constant and rational in,and that if,thenare constants. Then there exists an integer q with such that and
72、are linearly dependent. The same conclusion holds ifis transcendental in,and f satisfies,and if ,then asthrough a setof infinite measure, we havefor.</p><p> Lemma 2 ([10]) Letbe a periodic entire function
73、with periodand be transcendental in, is transcendental and analytic on.Ifhas a pole of odd order at or(including those which can be changed into this case by varying the period of and. (1.1) has a solutionwhich satisfie
74、s , then and are linearly independent.</p><p> Proofs of main results</p><p> The proof of main results are based on [8] and [15].</p><p> Proof of Theorem 1 Let us assume.Since
75、and are linearly independent, Lemma 1 implies that and must be linearly dependent. Let,Thensatisfies the differential equation</p><p> , (2.1)</p><p> Where is the Wronskian ofand(se
76、e [12, p. 5] or [1, p. 354]), andor some non-zero constant.Clearly, </p><p> and are both periodic functions with period,whileis periodic by definition. Hence (2.1) shows thatis also periodic with period .T
77、hus we can find an analytic functionin,so thatSubstituting this expression into (2.1) yields</p><p><b> (2.2)</b></p><p> Since bothand are analytic in,the Valiron theory [21, p. 1
78、5] gives their representations as</p><p> ,, (2.3)</p><p> where,are some integers, andare functions that are analytic and non-vanishing on ,and are entire functions. Following the same
79、 arguments as used in [8], we have</p><p> , (2.4)</p><p> where.Furthermore, the following properties hold [8]</p><p><b> ,</b></p><p><b&g
80、t; ,</b></p><p> Where (resp, ) is defined to be</p><p><b> (resp, ),</b></p><p> Some properties of solutions of periodic second order linear differential equ
81、ations</p><p> where(resp. denotes a counting function that only counts the zeros of in the right-half plane (resp. in the left-half plane), is the exponent of convergence of the zeros of in, which is defi
82、ned to be</p><p> Recall the condition ,we obtain.</p><p> Now substituting (2.3) into (2.2) yields</p><p><b> (2.5)</b></p><p> Proof of Corollary 1 We
83、 can easily deduce Corollary 1 (a) from Theorem 1 .</p><p> Proof of Corollary 1 (b). Supposeandare linearly independent and,then,and .We deduce from the conclusion of Corollary 1 (a) thatand are linearly d
84、ependent, j = 1; 2. Let.Then we can find a non-zero constant such that.Repeating the same arguments as used in Theorem 1 by using the fact that is also periodic, we obtain</p><p> ,a contradiction since .He
85、nce .</p><p> Proof of Theorem 2 Suppose there exists a non-trivial solution f of (1.1) that satisfies . We deduce , so and are linearly dependent by Corollary 1 (a). However, Lemma 2 implies that andare l
86、inearly independent. This is a contradiction. Hence holds for each non-trivial solution f of (1.1). This completes the proof of Theorem 2.</p><p> Acknowledgments The authors would like to thank the referee
87、s for helpful suggestions to improve this paper.</p><p> References</p><p> [1] ARSCOTT F M. Periodic Di®erential Equations [M]. The Macmillan Co., New York, 1964.</p><p> [
88、2] BAESCH A. On the explicit determination of certain solutions of periodic differential equations of higher order [J]. Results Math., 1996, 29(1-2): 42{55.</p><p> [3] BAESCH A, STEINMETZ N. Exceptional so
89、lutions of nth order periodic linear differential equations [J].Complex Variables Theory Appl., 1997, 34(1-2): 7{17.</p><p> [4] BANK S B. On the explicit determination of certain solutions of periodic diff
90、erential equations [J]. Complex Variables Theory Appl., 1993, 23(1-2): 101{121.</p><p> [5] BANK S B. Three results in the value-distribution theory of solutions of linear differential equations [J].Kodai M
91、ath. J., 1986, 9(2): 225{240.</p><p> [6] BANK S B, LAINE I. Representations of solutions of periodic second order linear differential equations [J]. J. Reine Angew. Math., 1983, 344: 1{21.</p><p
92、> [7] BANK S B, LANGLEY J K. Oscillation theorems for higher order linear differential equations with entire periodic coe±cients [J]. Comment. Math. Univ. St. Paul., 1992, 41(1): 65{85.</p><p> [8]
93、 CHIANG Y M, GAO Shi'an. On a problem in complex oscillation theory of periodic second order lineardifferential equations and some related perturbation results [J]. Ann. Acad. Sci. Fenn. Math., 2002, 27(2):273{290.&l
94、t;/p><p><b> 附錄2:</b></p><p><b> 外文翻譯原文:</b></p><p> CONTROLLABILITY OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY</p><p> A
95、bstract In this article, we give su?cient conditions for controllability of some partial neutral functional di?erential equations with in?nite delay. We suppose that the linear part is not necessarily densely de?ned but
96、satis?es the resolvent estimates of the Hille-Yosida theorem. The results are obtained using the integrated semigroups theory. An application is given to illustrate our abstract result.</p><p> Key words Co
97、ntrollability; integrated semigroup; integral solution; in?nity delay</p><p> 1 Introduction</p><p> In this article, we establish a result about controllability to the following class of part
98、ial neutral functional di?erential equations with in?nite delay:</p><p><b> (1)</b></p><p> where the state variabletakes values in a Banach spaceand the control is given in ,the
99、Banach space of admissible control functions with U a Banach space. C is a bounded linear operator from U into E, A : D(A) ? E → E is a linear operator on E, B is the phase space of functions mapping (?∞, 0] into E, whic
100、h will be speci?ed later, D is a bounded linear operator from B into E de?ned by</p><p> is a bounded linear operator from B into E and for each x : (?∞, T ] → E, T > 0, and t ∈ [0, T ], xt represents, a
101、s usual, the mapping from (?∞, 0] into E de?ned by</p><p> F is an E-valued nonlinear continuous mapping on.</p><p> The problem of controllability of linear and nonlinear systems represented
102、by ODE in ?nit dimensional space was extensively studied. Many authors extended the controllability concept to in?nite dimensional systems in Banach space with unbounded operators. Up to now, there are a lot of works on
103、this topic, see, for example, [4, 7, 10, 21]. There are many systems that can be written as abstract neutral evolution equations with in?nite delay to study [23]. In recent years, the theory of neutral fun</p><
104、;p> dimension was developed and it is still a ?eld of research (see, for instance, [2, 9, 14, 15] and the references therein). Meanwhile, the controllability problem of such systems was also discussed by many mathema
105、ticians, see, for example, [5, 8]. The objective of this article is to discuss the controllability for Eq. (1), where the linear part is supposed to be non-densely de?ned but satis?es the resolvent estimates of the Hille
106、-Yosida theorem. We shall assume conditions that assure global exist</p><p> Treating equations with in?nite delay such as Eq. (1), we need to introduce the phase space B. To avoid repetitions and understan
107、d the interesting properties of the phase space, suppose that is a (semi)normed abstract linear space of functions mapping (?∞, 0] into E, and satis?es the following fundamental axioms that were ?rst introduced in [13]
108、and widely discussed in [16].</p><p> There exist a positive constant H and functions K(.), M(.):,with K continuous and M locally bounded, such that, for any and ,if x : (?∞, σ + a] → E, and is continuous
109、on [σ, σ+a], then, for every t in [σ, σ+a], the following conditions hold:</p><p><b> (i) ,</b></p><p> (ii) ,which is equivalent to or every</p><p><b> (iii) &
110、lt;/b></p><p> (A) For the function in (A), t → xt is a B-valued continuous function for t in [σ, σ + a].</p><p> The space B is complete.</p><p> Throughout this article, we
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--一些周期性的二階線性微分方程解的方法
- 二階變系數(shù)線性微分方程的一些解法
- 非線性二階常微分方程解的多重性.pdf
- 二階線性微分方程解的增長性.pdf
- 分數(shù)階微分方程解的一些問題.pdf
- 關(guān)于二階線性微分方程解的性質(zhì)的研究.pdf
- 一類二階微分方程解的有界性.pdf
- 二階非線性微分方程解的振動性與漸近性.pdf
- 二階線性常微分方程解的存在與唯一性.pdf
- 帶阻尼的二階非線性微分方程解的振蕩性.pdf
- 幾類二階線性微分方程解的復(fù)振蕩性質(zhì).pdf
- 一階和二階非線性微分方程的漸近概周期解.pdf
- 幾類二階偏微分方程解的振動性研究.pdf
- 45976.二階脈沖常微分方程解的存在性研究
- 二階擬線性奇攝動微分方程解的漸近近似.pdf
- 18955.二階線性微分方程解的增長性的新探索
- 具奇異的二階微分方程周期解問題.pdf
- 12966.二階脈沖微分方程解的存在性與多解性
- 二階常微分方程周期邊值問題的解.pdf
- 一些整函數(shù)系數(shù)線性微分方程解的復(fù)振蕩性質(zhì).pdf
評論
0/150
提交評論